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1 EXTENDED ABSTRACT

Physical Activity (PA) is associated with important health
benefits, for example prevention of chronic illnesses such as
cancer, cardiovascular disease, and diabetes (see e.g. Bullard
et al. [2019]). The World Health Organization therefore
recommends adults to engage in PA of moderate intensity
for at least 150 minutes every week, spread over several
days WHO [2010]. About 40% of European adults do not
achieve recommended levels of PA, so there is much room
for improvement Marques et al. [2015]. In specific higher-
risk subgroups, e.g., cancers survivors, only 29 to 47% meet
the guidelines Blanchard et al. [2008].

Interventions have been designed to stimulate PA of dif-
ferent target groups by influencing relevant psycho-social
determinants based on theoretical behavioural explanation
frameworks. In the Active4Life project, we integrated data
from five different RCT intervention studies, and used this
data to learn Bayesian network models to obtain insight into
the most important determinants and how they interact. The
dataset contains data from 5975 participants of which 4405
received an intervention. The dataset contains 51 variables
which includes 11 determinants that were measured at 4
time points (at baseline, after 3 months, 6 months, and 12
months), several demographic variables, the intervention
variable, and variables which represent the amount of PA at
several time points.

A search-and-score based structure learning algorithm was
used to learn a linear Gaussian Bayesian network from data.
This search process was modified to be subject to time con-
straints, i.e., an arc Xt → Yt′ is not allowed if t′ < t and
several constraints to ensure that demographic variables and
the intervention variable do not contain determinants as par-
ents. To handle the missing data, the structural expectation
maximization (SEM) algorithm was used Friedman [1998].
This algorithm iteratively combines structure learning with
the estimation of missing values based on observed data
and the model learnt in a certain iteration. In previous work,
we have shown that SEM outperforms various imputations

methods in terms of goodness-of-fit Tummers et al. [2020]
on this dataset. However, SEM is commonly known to be
quite unstable due to its local optima. From the application
point-of-view, this is problematic, because the structure is
most relevant for learning about the main paths from inter-
vention to behaviour change.

For improving the reliability of identifying arcs using struc-
ture learning algorithms, Efron’s Bootstrap has been pro-
posed Friedman et al. [1999], where an arc is included in
the graph if it is contained in the learned graph in k% of the
bootstrap samples, where k% exceeds some fixed threshold.
While it is has been shown that this is an effective approach
when dealing with synthetic data generated from a Bayesian
network, it is not clear if this is a good approach when
dealing with complex and noisy real-world data. To obtain
some insight into the usefulness of this approach in case
of missing data, we ran experiments with the ALARM net-
work (containing 37 variables), from which datasets were
sampled with missing data.

To illustrate, we chose a dataset with 1000 cases, where
we ensured that 30% of the data are missing not at random
(MNAR). Missings were generated such that higher values
of the variables have a higher chance of being missing Xia
et al. [2017]. While we do not know whether missings are
MNAR in the PA application, it could be expected that mo-
tivational characteristics of the participants are correlated to
filling out questionnaires. We evaluated the performance of
learning the correct structure from this dataset (repeated 10
times). Without bootstrapping, the results are worse (mean
tp: 20.5, fp: 19, fn: 25.5) compared to fully observed data
(mean tp: 27.9, fp: 16.4, fn: 18.1). The high number of false
positives are most undesirable for this application, because
these may lead to a conclusion that some determinants are
relevant for behaviour change, whereas in reality they are
not. The bootstrapping results are shown in Figure 1. We
observe that with a threshold of 0.65, we find much lower
false positives with comparable number of tp and fn (mean
tp: 20.1, fp: 12.8, fn: 25.9) to the network learned without
bootstrapping. Additionally, with a higher threshold (0.95),
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Figure 1: The effect on bootstrapping for learning the structure of the ALARM network from data with MAR missing data.
The x-axis shows the number of bootstrap samples, and the y-axis is the mean tp, fp, and fn, respectively.

the false positive rate is very small.

A practical issue in real-world applications is that we do not
known how many bootstraps samples should be generated.
We propose the following idea to measure robustness: given
a number of bootstrap samples n and a fixed threshold, one
first learns two structures Gn and Hn each from n (inde-
pendent) bootstrap samples. In case Gn and Hn provide
robust estimates, one expects that Gn ≈ Hn, which we can
measure by the structure Hamming distance (SHD) between
Gn and Hn. Then, to select n, we increase the number of n
until the SHD converges. On the PA data, we observed that
it usually converged between 100-150 bootstrap samples in
the whole dataset and subsets of the data.

The Bayesian network model that we found show the
complex structure in which PA interventions influence PA
through pathways of determinants. The study reveals the
significance of determinants for which previous research
has only found limited evidence, for example self-efficacy
and social influence concepts. Therefore, this research may
provide new insights into the mechanism of PA behaviour
change. However, in order to obtain robust estimates of these
models, considerable effort should be taken to ensure that
the end-result is stable and reproducible. In future research,
we would like to investigate further ways to obtain robust
estimates of the structure in the presence of different types
of missing data mechanisms.
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