Knowledge Engineering with Bayesian Networks for Fog and Low Cloud forecasting for Aviation in Australia

T. Boneh^{1*}, G. T. Weymouth¹, R. Potts¹, P. Newham¹, A. Nicholson², K. Korb²

1: Australian Bureau of Meteorology
2: Monash University

Fog

- Definition of fog
- Fog Formation
 - sky cover, wind, moisture
- Deceptively simple when it comes to fog prediction
- Involved Uncertainty
 - Incomplete knowledge
 - Missing data or poor quality data
 - uncertainty in observation
 - uncertainty in prediction tools
- It is a local process
 - Small scale
 - Sensitive to local processes

Fog Forecasting for Airlines

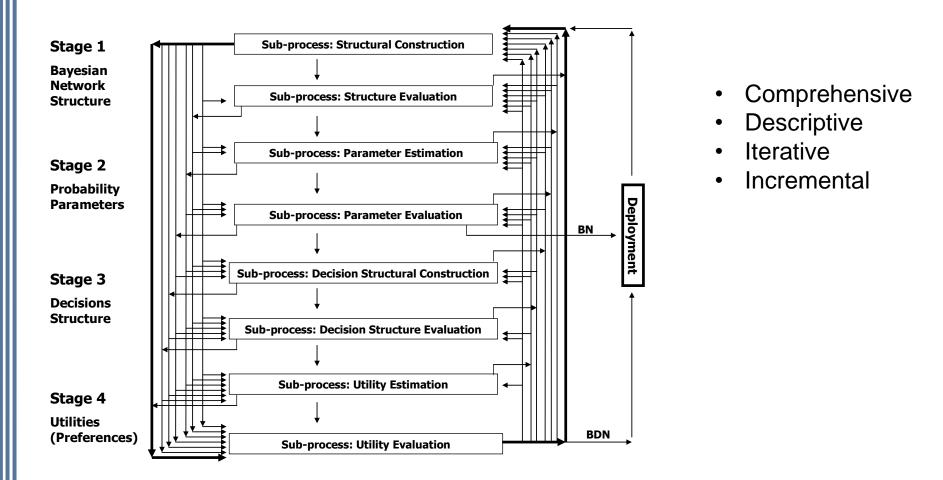
• Terminal Aerodrome Forecast (TAF) is issued every 6 hours and is valid for 30h

2pm -------→| ~ 9am (Perth) /11am (Melbourne) 8pm ------→| ~ 9am 2am ------→| ~ 9am

- when the fog probability $\ge 30\%$ -> included in the TAF
- If fog forecasted, aircrafts must carry enough fuel to
 - reach an alternative airport
 - maintain a holding pattern above the airport
- Code Grey < 30% chance of fog

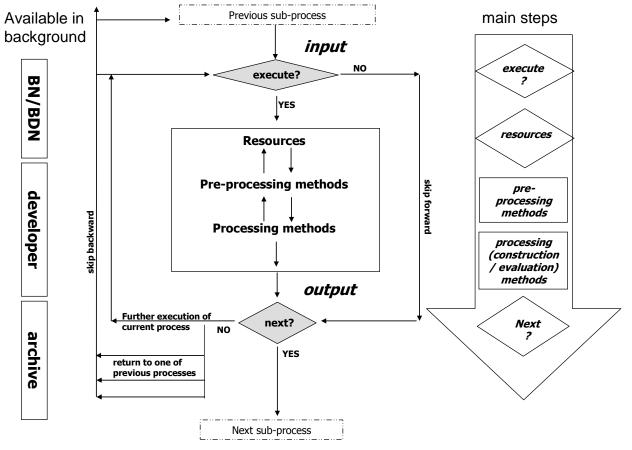
Existing Tools

- NWP (Numerical Weather Prediction models)
 - based on fluid dynamic and thermodynamic equations
- Subjective Judgment
 - local forecasters need to consider the uncertainties involved in the forecasting process and clients' requirements


• Local Guidance Tools

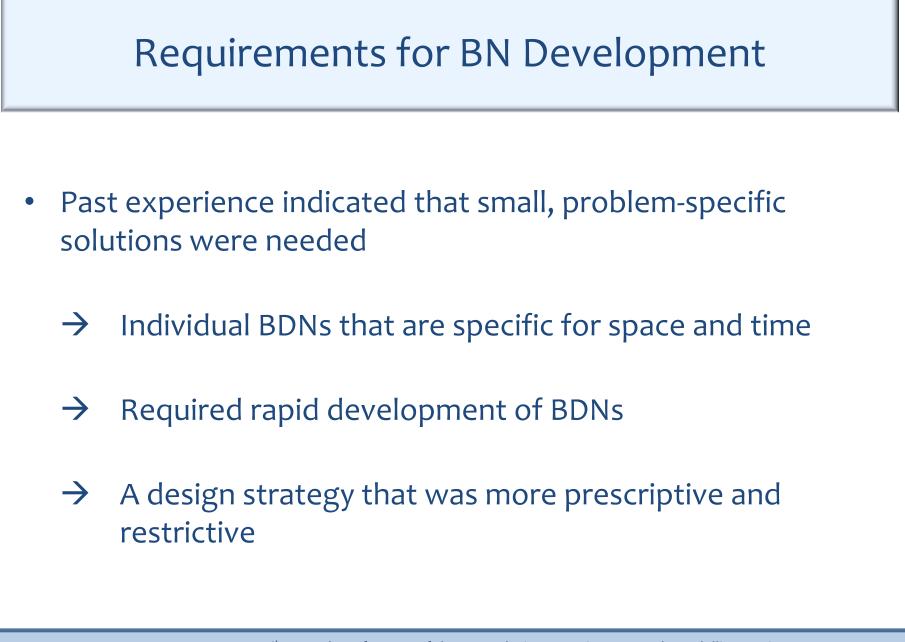
- forecasters at regional offices developed their own regional specific tools and rules of thumb
- General AI solutions
 - Attempts to generalise guidance tools for different locations and times have not always been successful

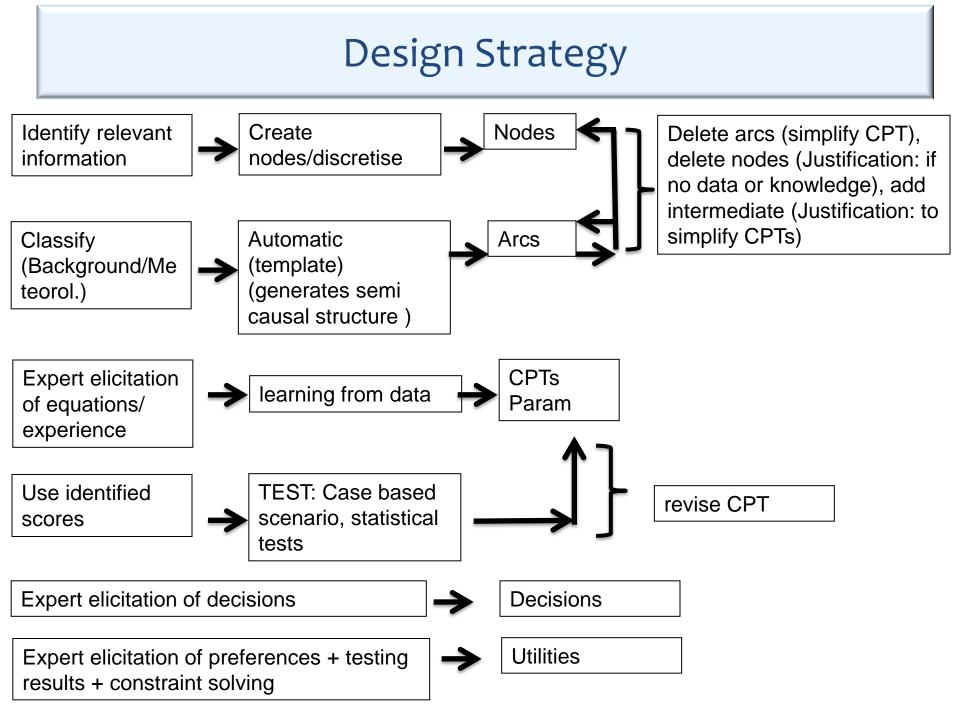
Priority airports


- Four priority airports were chosen for fog forecast improvement:
- Melbourne
 - ~ 12-13 fogs and 33 low cloud per year
- Sydney
 - ~ of 4 to 5 fogs per year
 - with the largest traffic volumes
- Canberra
 - ~ 42 fogs and 79 low cloud per year
- Perth
 - ~ 12 fogs per year
 - large distances to the nearest alternate airports

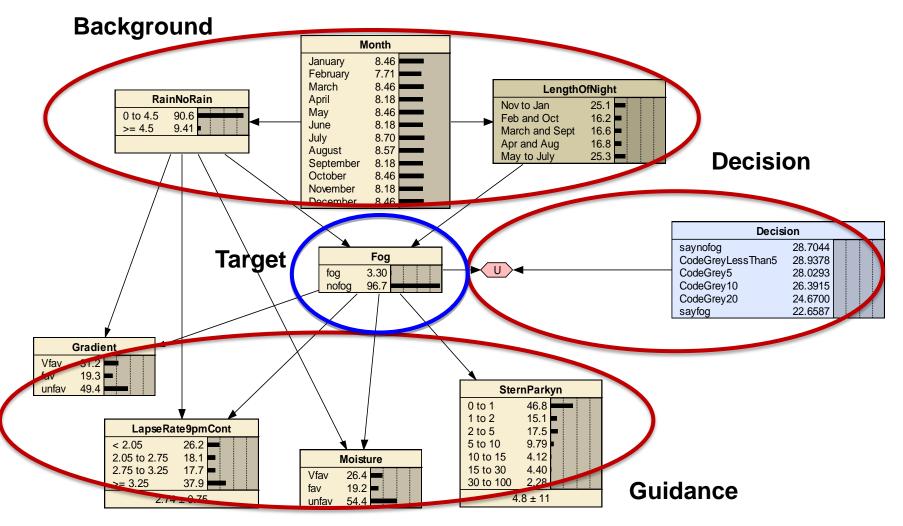
Knowledge Engineering: High Level methodology

Boneh T, PhD Thesis, Monash University, 2010

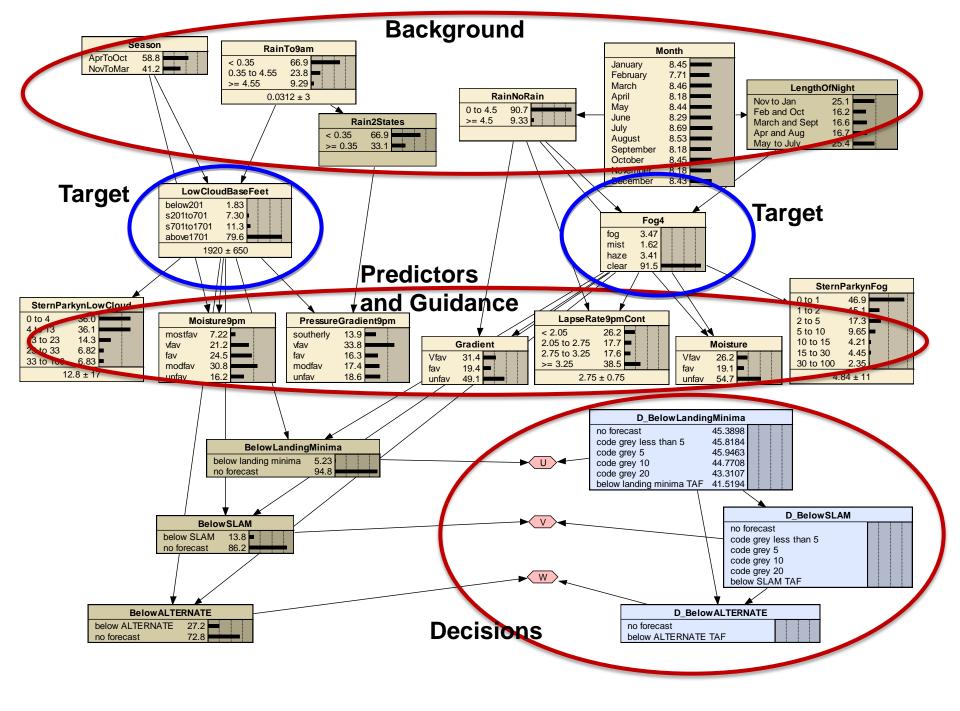

Knowledge Engineering: for Each Sub-Process



ABNMS 2012


Boneh T, PhD Thesis, Monash University, 2010

4th Annual Conference of the Australasian Bayesian Network Modelling Society 26th – 30th November 2012



Example of semi-causal BDN created by the design strategy

Predictors

A Large Number of Networks

				Fore	ecast Ti	mes		
Airport	Variant	F/LC/name of net	3	6 pm	9 pm	12	2	3
			pm			am	am	am
Melbourne	1	Fog 2state 3pm	٧	winter	summer			
	2	Fog 2state 12am				٧		
	3	Fog 4state 9pm						
	4	Fog 4state 12am						
	5	Low Cloud 9pm			٧			
	6	Low Cloud 12am				٧		
	3+5	Fog + Low Cloud 9pm			٧			
	4+6	Fog + Low Cloud 12am				٧		
Sydney	1	Fog 2state 12am				٧		
	2	Fog 2state 2am					٧	
	3	Fog 2state 3am						٧
Canberra	1	Fog 4state 6pm		٧				
	2	Fog 4state 12am				٧		
	3	Fog 4state 3am						٧
	4	Low Cloud 6pm		٧				
	5	Low Cloud 12am				٧		
	6	Low Cloud 3am						v
	3+6	Fog + Low Cloud 3am						٧
Perth	1	Fog 2state 3pm	٧	V	٧	٧	٧	٧

Fog Definitions at Different Airports

	# of nets	Fog (Y/N)	# of nets	visibility	# of nets	Low cloud Base	# of nets
Melbourne	8	Y if vis <=1000m	2	Fog<=1000, 1000 <mist<=3000, 3000<haze<=7000, 7000<clear< td=""><td>2</td><td>below 201 ft, s201 to 701 ft, s701 to 1701 ft, above 1701 ft</td><td>2</td></clear<></haze<=7000, </mist<=3000, 	2	below 201 ft, s201 to 701 ft, s701 to 1701 ft, above 1701 ft	2
Sydney	3	Y if vis <= 2000m	3				
Canberra	7			LessThan1001m, V1001To2000m, V2001To5000m, MoreThan5000m	3	LessThan251ft, B251To1400ft, B1400To2000ft, MoreThan2000ft	3
Perth	1	Y if vis <= 2000m	1				

Weather Information Used at Different Airports

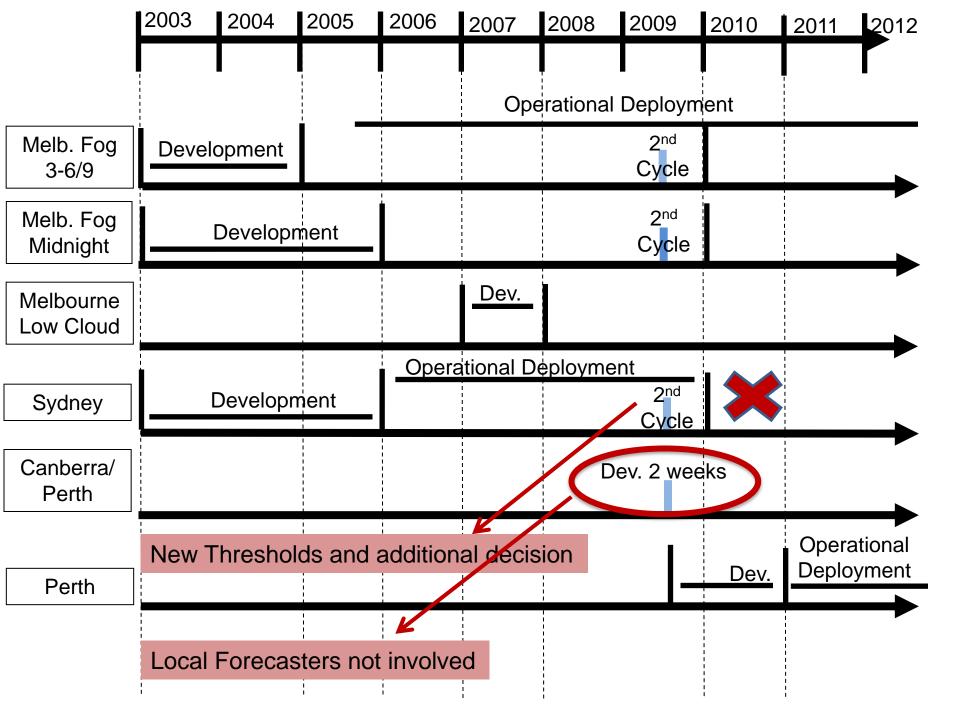
	Melbourne	Sydney	Canberra	Perth
Weather situation	Х	Х	Х	Х
Moisture	Х	Х	Х	Х
Moisture Upstream	Х	Х		
Wind	Х	Х	Х	Х
Stability	Х		Х	
Visibility			Х	
Visibility Upstream		Х		
Sky Cover		Х	Х	Х
Guidance	Х			Х

Evaluation

- What is required for acceptance of the BDNs?
 - 1. Network should have explanatory power
 - No Black Box Solution!
 - 2. Same or better results compared with existing approaches, using their existing measures

Evaluation Scores

		obse		
		fog	nofog	total
forecast	fog	а	b	a + b
TUTELASL	nofog	С	d	c + d
	total	a+c	b + d	a + b + c + d


а	hits/true positives	events forecast to occur, and did occur
b	false alarms/false positives	events forecast to occur, but did not occur
С	misses/false negatives	events forecast not to occur, but did occur
d	correct negatives/true negatives	events forecast not to occur, and did not occur

Score		
POD	Probability Of Detection, or hit rate	(a)/(a+c).
FAR	False Alarm Ratio	(b)/(a+b)
FAR*	False Alarm Rate	(b)/(b+d)

Example – Evaluation


Forecast	Operational		Network Cross Validation 1994		
	POD (%)	FAR (%)	POD (%)	FAR (%)	
3pm TAF	64	77	67	77	
3pm TAF and Code Grey	87	90	95	89	
9pm TAF	67	73	70	76	
9pm TAF and Code Grey	87	90	95	88	
Midnight TAF	74	72	75	76	
Midnight TAF and Code Grey	90	90	96	86	

TAF POD	TAF FAR	BN POD	BN FAR
94%	52%	97%	52%

Future Work (ARC Linkage 2012 – 2014)

- Refine process
 - Discretisation
 - Calibration
 - Parameterisation
- Refine Networks
 - Additional information
 - Accommodate for different seasons
 - Onset and Clearance
- Dynamic Bayesian networks

Thank You

Perth Fog Onset

```
getStartTime:
  if (month < 4 OR month > 10) {
         return startTime = 18;
  } else {
         start = 10 + ABS( 6 - month ) + Math.round( air temp(10Z) - dewpoint(10Z) );
         if rain:
               start = start - 1;
         if ( start > 20 )
               start = 20;
         if ( start < 12 )
               start = 12;
         prGradDiff = PrGradGP(at 10Z) + PrGradPA(at 10Z);
         if ( prGradDiff >= 5.0 && start < 15 )
               start = 15;
         if (prGradDiff >= 8.0 \&\& start < 18)
               start = 18;
         return startTime = start;
  }
```

• Pressure gradient Geraldton-Perth, Perth-Albany

Perth Fog Clearance

```
getFinishTime:
if (month < 4 OR month > 10) {
    return finishTime = 23;
} else {
    finish = 24;
    prGradDiff = PrGradGP(at 222) + PrGradPA(at 222);
    if ( prGradDiff > 4.0 OR prGradDiff < 1.0 )
        finish = 24;
    else
        finish = 01;
    return finishTime = finish;
}
```

• Pressure gradient Geraldton-Perth, Perth-Albany