Modelling waterbird responses to ecological conditions Coorong, Lower Lakes, & Murray Mouth Ramsar site.

Dr Jody O'Connor, Dr Dan Rogers, Dr Phil Pisanu. Department of Environment, Water and Natural Resources, Adelaide

Ramsar "Wetland of International Importance"

Common Greenshank-migratory wader

Banded Stilt- continentally nomadic

Map: Craig Noell, SARDI, from Lester & Fairweather 2009

Fish

Macroinvertebrates

Submerged Vegetation

Natural: 80ppt

150ppt

Response to ecological change?

Curlew Sandpiper

Banded Stilt

Fairy Tern

Common Greenshank

Data source: D.Paton Adelaide Uni

Banded Stilt

Response to ecological change?

Curlew Sandpiper

Banded Stilt

Fairy Tern

Common Greenshank

Conceptual Modelling

- Relationships between ecological components
- Visual
- Drivers of change
- Management levers

Small-mouthed Hardyhead

Fairy Tern

Fairy Tern Chick

Model species that are representative of a functional group of birds

Wading birds

Herbivores

Reed-dependent

Piscivores

Shorebirds

Sharp-tailed Sandpiper

Bathymetry Water Levels

Sharp-tailed Sandpiper

Bayesian Models

- Bayesian Belief Network (Netica)
 - Quantify relationships
 - Monitoring data + expert opinion
 - Elicitation of expert knowledge
 - Incorporate new data + update predictions

Sharp-tailed Sandpiper- "Ideal"

Sharp-tailed Sandpiper- "Adverse"

Source: CLAMMecology final report 2009

Spatial dataTest models

- Collect data
 - Predicted/actual

Outcomes

- Mechanistic understanding
- Knowledge gaps
 - Inform monitoring programs
- Ability to make predictions
 - Identify triggers for intervention (managers)
 - When intervene + response
 - Complement hydrological models

Government of South Australia

Department of Environment and Natural Resources

Thanks to:

David Paton, Jason Higham, Liz Barnett, Clare Manning, Paul Wainwright, Paul Wainwright, Justine Keuning, David & Margaret Dadd, Rebecca Quin, Ann Nicholson & the Bayesian Intelligence group for their contributions towards this project (datasets, expert advice and/or project development).

8 Experts

Workshop

High level local experience in bird ecology (current)

- 4 experts 3-10 years
- 4 experts 11-36 years

Qualifications

• Postgraduate (4), Undergraduate with honours (2)

Statistical knowledge

Non existent to advanced understanding + some modelling

Elicitation protocol

1 week before workshop

• Preliminary briefing

22 Questions

Probabilities, natural frequencies and quantities Format:

- Realistically, what is the lowest the value could be?
- What is the highest the value could be?
- What is your best guess (the most likely value)?
- How confident are you that the interval you provided contains the truth (give a value between 50% and 100%)?

(adapted from Burgman et al. 2011).

Generalist shorebird models

Souter NJ and Stead M, 2010, Lower Lakes seawater risk assessment conceptual models. EcoKnowledge report to the Department of Environment and Natural Resources.

Limits of Acceptable Change

Department for Environment and Heritage Ecological Character Description

Coorong, Lakes Alexandrina and Albert Wetland of International Importance

Sharp-tailed Sandpiper model

Common Greenshank

Consider that there are 100 fairy tern nests within 1km of a sufficient food source

- What is the <u>lowest number of nests</u> that could be predated by avian predators under these conditions?
- What is the <u>highest number of nests</u> that could be predated by avian predators under these conditions?
- What is your <u>best estimate</u> (most likely value) of the number of Fairy Tern nests that would be predated by avian predators?
- How confident are you that this interval captures the truth (between 50% (as likely as not) and 100% (absolute certainty))?

Better management

• Tools to predict impacts of environmental change for waterbirds

Fairy Tern

- Sensitive to environmental change
- Depend on CLLMM wetland habitats
- Good response data

Fairy Tern- Draft Conceptual Model

Sharp-tailed Sandpiper

box + arrow conceptual model

