Probabilistic Reasoning for Enhancing Decision Making in Elite Sports

Bahadorreza Ofoghi¹; John Zeleznikow^{1,2}; Clare MacMahon^{1,3}; Dan Dwyer⁴; Ann Nicholson⁵; Cathryn Pruscino⁶

- ¹ Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne
 ² School of Management and Information Systems, Victoria University, Melbourne
 - ³ School of Sport and Exercise Science, Victoria University, Melbourne
 - ⁴ School of Exercise and Nutrition Sciences, Deakin University, Geelong
 - ⁵ Clayton School of Information Technology, Monash University, Melbourne ⁶ Victorian Institute of Sport, Melbourne

November 27, 2012

Decision Making in Elite Sports

Types of decisions

- tactics, e.g., choosing certain formations in soccer
- action choices, e.g., how to return certain serves in tennis
- strategy
 - o athlete selection and training, e.g., using certain combinations of gymnasts in a competition
 - o race planning, e.g., how to finish each 500m sector of 2000m rowing races

Decision Making in Elite Sports

- There is uncertainty
 - complexity of interactions
 - environmental conditions
- There are heterogenous sources of evidence, e.g.,
 - time
 - ranking
 - psychological preparedness
 - pre-season training conditions
 - weather conditions
 - etc.

- A six-event competition
 - flying time trial
 - time trial
 - individual pursuit
 - scratch race
 - points race
 - elimination race
- Winning criterion
 - riders get scores according to their ranking in each individual component
 - winner is the rider with the least overall score

- Research matters
 - what is the likelihood of finishing in certain overall places given the ranking of a rider in completed components?
 - o BN modeling
 - what is the best possible combination of rankings in the upcoming components that maximizes the likelihood of finishing in certain overall places?
 - BN modeling + combinatorial optimization

• Structure

The joint probability function

$$p(e, \bar{h}) = \prod_{i} p(h_i|e)$$

 $e = fs : final \ standing$
 $\bar{h} = \{h_1, h_2, \dots, h_6\}$

• Evaluation

- data: competition results since 2009
 - o category 1: medal winners ranked 1-3
 - o category 2: non-medal winners ranked 4-10
 - o category 3: non-medal winners ranked >10
- CPT learning: counting-learning
- procedure: LOOCV
- interface: Netica + Netica API (C#.Net)

Results

Table 1. Average accuracy measures (%) of the LOOCV procedure on the BNs constructed for both genders after each round of the six-event cycling omnium

Gender Eval. criterion	r1	r2	r3	r4	r5	r6
male $a == p$	1.7610	4.0750	4.0750	8.3370	12.2160	16.1740
$a = p \pm 1$	7.6110	9.3710	11.0370	26.1340	32.1450	38.1670
$a == p \pm 2$	14.1680	16.9580	19.0410	35.6160	42.9810	50.2090
a == p (cat.)	38.5070	40.9000	42.5660	56.1640	59.0290	66.8590
female $a == p$	1.7450	5.6525	7.7487	9.0887	12.6137	11.0512
$a = p \pm 1$	10.2612	18.7862	20.3362	33.2575	36.1287	35.5162
$a = p \pm 2$	16.8525	26.5812	25.7525	46.7650	49.2175	49.3587
a == p (cat.)	43.5350	49.0075	49.6262	66.3125	62.5987	62.2012

Note. a == p (cat.) represents a == p for categories (1st-3rd,4th-10th,>10th)

- A high profile Wolrd/Olympic competition
 - sprint: 500m
 - endurance: 160/185km
 - most common: 2000m

Research matters

- strategizing:
 - o considering measures of energy expenditure
 - understanding the level of performance required at the different sectors
- we considered:
 - \circ what is the chance of medal winning for rowers if they finish a sector in n^{th} position?
 - what performance during each 500m sector of rowing races may maximize the chance of finishing in certain positions?

• Structure

• The joint probability function

$$p(e, \bar{h}) = \prod_{i} p(h_i|e)$$

$$\bar{h} = \{h_1, h_2, \dots, h_8\} = \{t_1, t_2, t_3, t_4, r_1, r_2, r_3, r_4\}$$

Evaluation

- data
 - o competition results from 1996 to 2009
 - o only top six teams in finals
 - o each record: absolute and cumulative times at each 500m split
 - o we extracted rankings at each 500m split
- CPT learning: counting-learning
- procedure: BNs + combinatorial optimization
- interface: Netica + Netica API (C#.Net)

Results

Table 2. Maximal solutions found for certain rowing final rankings. The variables r_1 to r_4 show the rankings in the first to the fourth sectors and the variables t_1 to t_4 represent the finish times in the same sectors.

Race	r_1	r ₂	r ₃	r ₄	t_1	t_2	t ₃	t ₄	Final rank	Prob. (%)
M4-	1	1	1	3	82-84	86-88	86-88	88-90	1	99.04
M4-	2	2	2	6	100-102	102-104	100-102	100-102	2	94.80
M4-	6	3	3	3	84-86	88-90	84-86	84-86	3	86.80
W2- W2- W2-	1 5 6	1 2 3	1 2 3	3 2 5	98-100 102-104 104-106	102-104 108-110 104-106	104-106 108-110 104-106	102-104 104-106 106-108	1 2 3	99.92 99.40 98.47

• Results (cont.)

Table 3. Classification analysis of the rowing data with split measures

Data set	Classifier	Precision	Recall	F-measure
M4-	SVM	0.524	0.521	0.517
	C4.5	0.391	0.397	0.390
	Random Forest	0.429	0.432	0.428
	RBF	0.153	0.214	0.160
	NB	0.475	0.483	0.475
	KNN (K=10)	0.474	0.474	0.466
W2-	SVM C4.5 Random Forest RBF NB KNN (K=10)	0.600 0.557 0.554 0.142 0.609 0.610	0.601 0.563 0.550 0.189 0.609 0.618	0.600 0.557 0.551 0.157 0.609 0.611

Limitations of BNs in Sports

- Unseen sports performances
 - record performances
 - outliers
 - \circ poor performances, e.g., $t_1 > max(t_1)$ in rowing
 - \circ unseen combinations, e.g., 24,24,24,24,24,24 or 1,1,1,1,1 in cycling omnium

Limitations of BNs in Sports

• Example scenario 1:

- BN: constructed for track cycling omnium
- input: 1,1,1,1,1 for the six nodes of the six individual events
- observation: likelihood of final standing 1

Table 4. Likelihood analysis of unseen record performances in track cycling omnium using BNs

Sex	Learning algorithm	Likelihood of fs=1 (%)
female	CL	77.2
	EM	0.16
	GD	14.0
male	CL	69.1
	EM	84.9
	GD	89.7

Limitations of BNs in Sports

• Example scenario 2:

BN: constructed for rowing

- input: $t_1 < min(t_1)$ for the first 500 m sector

observation: likelihood of final standing 1

Table 5. Likelihood analysis of unseen record performances in rowing using BNs

Race	$min(t_1)$	t_1 Entered	$\frac{\text{Likelihoo}}{min(t_1)}$	d of fs=1 (%) t_1 Entered	Learning algorithm
M4-	01:22.40	01:21.00	39.65 70.70 63.39	17.20 22.38 17.37	CL EM GD
W2-	01:38.70	01:37.00	25.66 39.36 38.42	17.26 17.15 16.12	CL EM GD

Concluding Remarks

- BNs (+ CO techniques) successfully applied to decision support in some sports, including:
 - track cycling omnium
 - rowing

 According to our observations, BNs fall short in dealing with (modeling) unseen performances

Thank you!

Bahadorreza OFOGHI email: bahadorreza.ofoghi@vu.edu.au

phone: +61 3 9919 1820