Causal Discovery of Dynamic Bayesian Networks

Cora Perez-Ariza¹, Ann Nicholson², Kevin Korb², Steven Mascaro² and Chao Heng Hu²

¹ Dept. of Computer Science and Artificial Intelligence University of Granada

² Clayton School of IT Monash University

Constraint-based learning

- Performs independence tests
- e.g. PC algorithm (Spirtes *et al.,* 1993)
- Tests all pairs for direct dependencies

Constraint-based learning

- Performs independence tests
- e.g. PC algorithm (Spirtes *et al.,* 1993)
- Tests all pairs for direct dependencies

Metric-based learning

- (Stochastic) search and score
- Learning programs/packages: e.g. CaMML (Causal discovery via MML), BNT (Bayes Net Toolbox).

Metric-based learning

- (Stochastic) search and score
- Learning programs/packages: e.g. CaMML (Causal discovery via MML), BNT (Bayes Net Toolbox).

 $M \rightarrow M'$: Add/remove/reverse arcs

Dynamic Bayesian Networks

Extension of BN with arcs from t \rightarrow t + 1

DBNs that we consider:

1. Same structure for each slice (i.e. stationary)

2. Arcs cannot span more than one time step

Learning *Dynamic* Bayesian Networks

Why not use existing static learners?

- Need to guarantee slice t nodes come before slice t+1 nodes
- Often want slices to be the same (i.e. stationary)
- Make the search more efficient
 - ⇒ Produce better models

Learning DBNs – Previous Approaches

Friedman et al. (1998)

- Uses BIC/BDe scoring
- Hill-climbing
- Learn the prior/initial network and the transition network

Learning DBNs – Previous Approaches

Bayes Net Toolbox (BNT)

- Written by Kevin Murphy (2001)
- Supports DBN learning and inference

BNT algorithm

- Uses BIC/ML scoring
- Guarantees that $X^t \prec X^{t+1}$
- Only learns arcs between slices (temporal arcs)

Two New Approaches to Learning DBNs

- 1. Enforce stationary DBN structure with structural priors
- 2. Enhance existing search and score procedure to take DBN structure into account

Both take advantage of our BN learner software CaMML

CaMML

- Bayesian network learner created at Monash
- Uses MML for score and MCMC for search
- Can specify flexible priors:
 - A -> B: Direct causal connection
 - A B: Direct relation
 - A => B: Ancestral relation
 - A ~ B: Correlation
 - Tiers
 - Existing BN structure

CaMML

- Bayesian network learner created at Monash
- Uses MML for score and MCMC for search
- Can specify flexible priors:
 - A -> B: Direct causal connection
 - A B: Direct relation
 - A => B: Ancestral relation
 - A ~ B: Correlation
 - Tiers
 - Existing BN structure

CaMML Tier Priors Learning

	Dataset				
	X1	X2		Xn	
1					
2					
3					
4					

	Timestep 1			Timestep 2				
	X1	X2	 Xn		X1	X2		Xn
1				2				
2				3				
3				4				
4								

CaMML Tier Priors Learning

Motivation, SES, Education

<

Motivation1, SES1, Education1

CaMML 2-Step Learning

Experiments

Test models

Models	Domain	# Nodes	# Arcs
Milk Infection	Agricultural	14	23
Metastatic Cancer	Health	12	18
BAT	Transport	56	68

We compare CaMML against two other learning programs:

- PC algorithm (in GeNIe)

- BNT

Milk Infection DBN

Use mutual information to score strength of arcs

BAT DBN

Experiment #1

- Plain static BN learning (without using priors)
- CaMML vs GeNIe (PC algorithm)

Experiment #2

- Learning with tier priors
- CaMML vs GeNIe and BNT

Experiment #3

• Learning using tier priors vs 2-step algorithm

Experiment Procedure

ED/CKL

Evaluation

Edit distance

Count 1 if an arc is missing/added/reversed in the learned model

Our modification for DBNs:

ED_{DBN} = W_s.N_s + W_t.N_t

Causal Kullback-Leibler divergence

Computes the distance of probability distribution between model P and model Q

Milk and cancer model (CaMML vs GeNIe, using tiers)

CaMML		temporal	static	total
Models	Datasize	link errors	link (T1) errors	link errors
	100	1.3 (0.458)	4.0 (0.0)	5.3(0.458)
Metastatic Cancer	1000	0.0 (0.0)	1.7 (0.458)	1.7 (0.458)
	10000	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	100	4.6 (0.489)	5.9 (0.3)	10.5 (0.5)
Milk Infection	1000	2.0 (0.0)	1.1 (0.7)	3.1 (0.7)
	10000	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
GeNIe		temporal	static	total
Models	Datasize	link errors	link (T1) errors	link errors
	100	5	4	9
Metastatic Cancer	1000	3	2	5
	10000	0	2.5	2.5
	100	2	7	9
Milk Infection	100 1000	2	7 6	9 7

Milk and cancer model (CaMML vs GeNIe, using tiers)

CaMML		temporal	static	total
Models	Datasize	link-errors	link (T1) errors	link errors
	100	1.3 (0.458)	4.0 (0.0)	5.3(0.458)
Metastatic Cancer	1000	0.0 (0.0)	1.7 (0.458)	1.7 (0.458)
	10000	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	100	4 .6 (0.489)	5.9 (0.3)	10.5 (0.5)
Milk Infection	1000	2.0 (0.0) 1.1 (0.7)		3.1 (0.7)
	10000	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
GeNle		temporal	static	total
Models	Datasize	link errors	link (T1) errors	link errors
	100	5	4	9
Metastatic Cance	r 1000	3	2	5
	10000	0	2.5	2.5
	100	2	7	9
Milk Infection	1000	1	6	7
	10000	1	5	6

Transitional arc errors for the BAT network

Datasize	CaMML w/ Tiers	GeNle (PC)	BNT
500	6.8 (0.98)	13	7.5 (0.50)
5000	5.4 (1.62)	10	6.2 (0.74)
50000	1.0 (0.0)	10	3.7 (0.33)

BAT model (CaMML, tiers vs 2-step learning)

BAT model (CaMML, tiers vs 2-step learning)

BAT model (CaMML, tiers vs 2-step learning)

Summary

GeNIe(PC) tends to over-fit (i.e. more arcs added) with large data size in Experiment #1.

Using tiers, CaMML produces fewer errors than BNT and GeNIe(PC).

CaMML can recover more weak arcs, and usually learns all the strong arcs.

The 2-step learning algorithm produces comparable results, better at learning static arcs.

CaMML 2-Step Learning Issues

CaMML 2-Step Learning Issues

Current and Future Work

- Modify CaMML's search and score:
 - Alter score to avoid double counting static arcs

- Alter search to avoid invalid DBN structures
- Ultimately: Reduce the search space so that we can find good models more quickly