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Background and motivation

» GeoNet/GNS volcanologists analyse volcano monitoring data and provide geological advice
to government agencies

» They regularly estimate eruption probabilities for volcanoes in unrest for time windows of 28
or 91 days to calculate hourly risk of fatality

» Hourly risk of fatality
— >1073no access
— 103- 10+ high level managerial sign off
— 104-10-° Volcano Science Advisor sign off
— < 10°normal field procedures

» Challenge to estimate small probabilities and to
integrate different strands of data

» Trial Bayesian networks to create a model context
like in earthquake forecasting

Photo: Brad Scott

Hourly risk of fatality work: Deligne et al. (2018) J Applied Volc
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ABNMS 2014: Rotorua, New Zealand
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ABNMS 2014: Rotorua, New Zealand

Eruption in next month Retrospective analysis of uncertain eruption
oz eror precursors at La Soufriére volcano, Guadeloupe,
Phreatic_Eruption

Vegmatic_no_Blast Dore 1975-77: volcanic hazard assessment using a
e Bayesian Belief Network approach

Thea K Hincks'", Jean-Christophe Komorowski?, Stephen R Sparks' and Willy P Aspinall'”

Abstract

Background: Scientists monitoring active volcanoes are increasingly required to provide decision support to civil
authorities during periods of unrest. As the extent and resolution of monitoring improves, the process of jointly
interpreting multiple strands of indirect evidence becomes increasingly complex. Similarities with uncertainties in
medical diagnosis suggest a formal evidence-based approach, whereby monitoring data are analysed synoptically
Yes to provide probabilistic hazard forecasts. A statistical tool to formalize such inferences is the Bayesian Belief Network
No (BBN). By explicitly representing conditional dependencies between the volcanological model and observations,

No No BBNs use probability theory to treat uncertainties in a rational and auditable manner, as warranted by the strength
of the scientific evidence. A retrospective analysis is given for the 1976 Guadeloupe crisis, using a BBN to provide
inferential assessment of the state of the evolving magmatic system and probability of incipient eruption. Conditional
dependencies are characterized quantitatively by structured expert elicitation.

Fresh magma Magmatic pertubation of Shallow magma
ascending hydothermal system

Yes Yes

Results: Analysis of the available monitoring data suggests that at the height of the crisis the probability of magmatic
intrusion was high, in accordance with scientific thinking at the time. The corresponding probability of magmatic
eruption was elevated in July and August 1976 and signs of precursory activity were justifiably cause for concern.
Magmatic intrusion However, collective uncertainty about the future course of the crisis was also substantial. Of all the possible scenarios,
atd epth the most likely outcome evinced by interpretation of observations on 31 August 1976 was ‘no eruption’ (mean

probability 0.5); the chance of a magmatic eruption/blast had an estimated mean probability of ~04. There was
therefore no evidential basis for asserting one scenario to be significantly more likely than another.

Yes Conclusions: Our analysis adds objective probabilistic expression to the volcanological narrative at the time of the

No 1976 crisis, and demonstrates that a formal evidential case could have supported the authorities' concerns about public
safety and decision to evacuate. Revisiting the episode highlights many challenges for modem, contemporary decision
making under conditions of considerable uncertainty, and suggests the BBN is a suitable framework for marshalling
multiple, uncertain observations, model results and interpretations. The formulation presented here can be developed
as a tool for ongoing use in the volcano observatory.

Keywords: Volcanic hazards; Multi-parameter monitoring; Bayesian inference; Uncertainty; Decision making;
Expert judgement




ABNMS 2015: Melbourne, Australia
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. Glimpses of results
ABNMS 2017: Melbourne, Australia P
More in: http://dx.doi.org/10.21420/G20G9B
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Bayesian Networks (BNs) are probabilistic graphical models that provide a robust and
flexible framework for understanding complex systems. Limited case studies have
demonstrated the potential of BNs in modeling multiple data streams for eruption
forecasting and volcanic hazard assessment. Nevertheless, BNs are not widely employed
in volcano observatories. Motivated by their need to determine eruption-related fieldwork
risks, we have worked closely with the New Zealand volcano monitoring team to appraise
BNs for eruption forecasting with the purpose, at this stage, of assessing the utility of
the concept rather than develop a full operational framework. We adapted a previously
published BN for a pilot study to forecast volcanic eruption on Whakaari/White Island.
Developing the model structure provided a useful framework for the members of the
volcano monitoring team to share their knowledge and interpretation of the volcanic
system. We aimed to capture the conceptual understanding of the volcanic processes
and represent all observables that are regularly monitored. The pilot model has a
total of 30 variables, four of them describing the volcanic processes that can lead to
three different types of eruptions: phreatic, magmatic explosive and magmatic effusive.
The remaining 23 variables are grouped into observations related to seismicity, fluid
geochemistry and surface manifestations. To estimate the model parameters, we held a
workshop with 11 experts, including two from outside the monitoring team. To reduce
the number of conditional probabilities that the experts needed to estimate, each variable
is described by only two states. However, experts were concerned about this limitation,
in particular for continuous data. Therefore, they were reluctant to define thresholds to
distinguish between states. We conclude that volcano monitoring requires BN modeling
techniques that can accommodate continuous variables. More work is required to link
unobservable (latent) processes with observables and with eruptive patterns, and to
model dynamic processes. A provisional application of the pilot model revealed several
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Bayesian networks as decision-support tools

in the next volcanic crisis

A pilot study for eruption forecasting on Whakaari/White Island
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ABNMS 2020: online

Not Secure — vulkan.gns.cri.nz

. Bayesian Network for volcanoes

Available models (3):

ruapehu_91 days_eruption...

. Download model
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Reference

A Bayesian Network for eruption
forecasting at Mt. Ruapehu to
support

the life-safety elicitation.
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Building an eruption forecast model for Mount Ruapehu

Model input

« Conceptual model

« Avallable data = monitoring data

e EXperts = volcano monitoring group

Tools:
« Data analysis: Jupyter Notebooks

BN implementation: Python programming
language; SMILE reasoning engine for
graphical probabilistic models

« Deployment on GNS Science's CI/CD platform  Photo: Lloyd Homer

GNS Science
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Ruapehlél conceptual model
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Ruapehu: Time series of key parameters

Eruptions
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Declustering the eruption catalogue

Rationale: Forecasting the onset of an eruptive period, not
95 the next eruption
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Estimating model uncertainty and forecast comparison
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Eruption probability

Case Study: March/April 2022
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Uninet

=) & == Uninet | LightTwist Software X =+

. Software for continuous BNs, some R T s HEP 2 0 OEED
discrete nodes possible LightTwist Software

 Parameterization consists of defining e
margins for all nodes and Uninel
parameterizing the dependence by UninetEngine
(conditional) rank correlations

e Learning structure and
parameterization is based on the
empirical rank correlation matrix

Uninet standalone

Uninet is a standalone uncertainty analysis software package. Its main
focus is dependence modelling for high dimensional distributions.
Random variables can be coupled using Bayesian networks, vine-
copula constructions or dependence trees.

Read the Uninet help file describing the software in detail:
UninetHelp.pdf (1.4 MB)

Visit the licensing page for details about the Uninet and UninetEngine
licences and to find out how to acquire the latest versions.

GNS Science



Uninet
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Conclusions and outlook

» With persistence, enthusiasm and support
from external colleagues, a lot can be
achieved with time.

» Bayesian network have started to be useful
and used in volcanic monitoring.

» There is still a lot to learn!

Going forward we plan to:

» Apply the method to other volcanoes
» Extend the questions to address other
volcanic hazards and their impacts

» Model time dependence better

Photo: Lloyd Homer
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Bayesian

» Any continuous variables

v" marginal distributions
v'ameasure of bivariate dependence
v'an assumption about the “shape” of the bivariate

dependence
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Bayesian

» A measure of bivariate dependence
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» always exists

» does not depend on the marginal distributions (non-parametric measure
of correlation)

» measures monotone dependence

»> it parametrizes the chosen “shape of dependence” (copula)
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» An assumption about the bivariate dependence - copula

Density of Clayton copula with correlation 0.7. Density of Frank copula with corre/ation 0.7.
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