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Abstract

Monte Carlo (MC) Dropout technique for uncer-
tainty estimation of deep neural networks has cer-
tainly been found useful for medical image segmen-
tation and classification tasks. However, Dropout
as a general technique is known to be harmful to
convolutional neural networks and therefore has
been often bypassed by other regularization tech-
niques when it comes to its application to images.
In this paper, we propose to apply an improved un-
certainty estimation approach, Monte Carlo Drop-
Filter (MCDF), for the problem of brain tumor
images segmentation. Our models are able to ef-
ficiently and harmlessly incorporate the idea of
Dropout for convolutional neural network archi-
tectures, which is known as Spatial Dropout, or
DropFilter, into Bayesian inference based on the
MC sampling. We describe the advantages of MC
DropFilter technique when applied to solve the
problem of brain tumor image segmentation on
BraTS dataset, and, according to our evaluation re-
sults, the technique achieves superior performance
over state-of-the-art baselines and MC Dropout.

1 INTRODUCTION

The majority of research concludes that the number of indi-
viduals who suffer and die from brain tumors has increased
during the past few decades [Kaneko et al., 2002, Porter
et al., 2010]. Despite numerous works devoted to the clini-
cal diagnosis of brain tumors, it is difficult to differentiate
this pathology of the central nervous system (CNS) from
other diseases. Early detection of CNS neoplasms is still
challenging, which is particularly due to the variety of op-
tions for the debut of neuro-oncological pathology and the
polymorphism of its clinical and neurological manifesta-
tions. Currently, magnetic resonance imaging (MRI) is the

most common technique for brain tumors investigation.

Deep neural networks (DNNs) are successfully applied for
automatic detection of tumors on MRI scans [Wang et al.,
2017, 2018]. Automated systems based on DNNs can assist
doctors in the disease identification at early stages, which
provides more ways to reduce the risk of irreversible dam-
age [Kan et al., 2018, Bakas et al., 2018].

At the same time, understanding what a predictive model
is not confident about becomes critical in machine learning
applications to medical problems. While the modern DNNs
are capable to learn high dimensional representations, they
often fail to generalize to real-world data. However, their
outputs are blindly assumed to be accurate, which may result
in error diagnoses in medical tasks [Leibig et al., 2017] and
wrong decisions in other domains [16-007, 2017, Guynn,
2015].

This issue motivates researchers to develop methods that
allow to distinguish and estimate the impact of different
factors resulting in prediction uncertainty. Such methods and
corresponding frameworks may vary [Lakshminarayanan
et al., 2017, Segú et al., 2019], but they are mostly grounded
in the Bayesian formalism [Bernardo and Smith, 2009].

There are two types of uncertainty measured in deep learn-
ing for computer vision (CV). The first one is aleatoric
uncertainty is related to noise inherent in data [Wang et al.,
2019a,b]. The second type, which is called epistemic uncer-
tainty, represent the uncertainty in the model parameters,
capturing a lack of data about the initial distribution. It can
be decreased with a sufficient amount of data provided and
is usually referred to as model uncertainty. Approximate
variational inference (VI) is widely used to estimate epis-
temic uncertainty. However, it is expensive to compute for
very deep NNs. Hence, approximate methods and tools have
been developed by Gal and Ghahramani [2016], Li et al.
[2017], Zhu and Zabaras [2018] that have been also used in
brain tumor imaging [Wang et al., 2019a, Jungo et al., 2017,
2018]. One very popular method is Monte Carlo Dropout
(MC Dropout, MCDO) [Gal and Ghahramani, 2016]. It has
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proven to be efficient due to memory savings compared to
other VI methods for very deep NNs [Gal and Ghahramani,
2016]. Rousseau et al. [2021], Mehta and Arbel [2018] also
demonstrated that the technique can be successfully applied
to brain tumor detection.

The problem with the usage of the classical Dropout in
convolutional layers is that switching off random neurons
of filters results in corrupting learned feature representa-
tions. The idea comes from structural differences between
dense and convolutional layers, which are believed to be the
main reason why Dropout does not work well enough for
convolutional layers.

Instead of Dropout, Tompson et al. [2015] proposed to con-
sider whole convolutional filters as drop units. The motiva-
tion for these techniques is that in convolutional layers co-
adaptations tend to occur between filters rather than inside a
filter. This technique referred as Spatial Dropout [Tompson
et al., 2015], DropChannel [Zhang et al., 2019] or DropFil-
ter [Tian, 2018] provides better results than dropout. In this
research we will refer to that technique as DropFilter.

Based on the success of DropFilter, the epistemic uncer-
tainty estimation technique, which we refer as Monte Carlo
DropFilter (MC DropFilter, MCDF) has been also recently
suggested by Zhang et al. [2019]. MC DropFilter has been
proven its efficiency for uncertainty quantification and
model calibration compared to MC Dropout, but no works
on its application for the epistemic uncertainty estimation
in the brain MRI problems have been found.

To close the gap, we propose to use the MC DropFilter
for the epistemic uncertainty estimation in the brain tumor
MRI segmentation problem based on convolutional neural
networks, which is the main paper contribution.

The paper investigates the following research questions:

RQ1. Is MC DropFilter superior compared to MC Dropout
for the problem of brain tumor segmentation?

RQ2. Does epistemic uncertainty quantification based on
MC DropFilter help improving the accuracy of tumors seg-
mentation?

In the article we answer these questions applying the
MC DropFilter for two models, which use two different
baseline backbones, namely Xception [Chollet, 2017] and
DenseNet [Huang et al., 2017]. These baselines recently
showed high performance compared to popular architec-
tures for our problem [Zeineldin et al., 2020]. We analyze
models calibration based on proposed MC DropFilter and
classical MC Dropout as well as the impact of these tech-
niques on the segmentation problem solving.

2 BACKGROUND

2.1 EPISTEMIC UNCERTAINTY BASED MONTE
CARLO DROPOUT

Following Gal and Ghahramani [2016], Wang et al. [2019a],
we first give the theoretical formulation of epistemic un-
certainty for the image segmentation problem. Let X be
an image, Y = {y1, . . . , yM} be a segmentation mask for
X, where yi is the i-th pixel of a mask. Then f(·) is the
solving function for segmentation problem represented by
a deep neural network with parameters ω. Let qθ(ω) be
an approximating distribution over the set of function pa-
rameters, which could be found based on minimizing the
Kullback–Leibler divergence to parameters posterior. Monte
Carlo sampling from qθ(ω) for the model f(ω,X) aims to
approximate the predictive distribution p(Y |X).

Gal and Ghahramani [2016] introduces the Dropout [Hin-
ton et al., 2012] as the way of ω neural network model
parameters representation. The approximating distribution
qθ(ω) for NN f(ω,X) with Dropout applied before every
layer l equals to

∏
l qMl(Wl) with Ml the mean weights

matrix. The approximating distribution for the layer l is
qMl(W ) = MK

c · zK with zK ∼ Bern(1 − p) the drop-
ping out probability vector, where p is the Dropout rate.
This technique is called MC Dropout. Using it, sampling
ŷn = qθn(X) is performed with different zN dropout masks
N times giving Y = {ŷ1, . . . , ŷN}. The predicted segmen-
tation mask for X image can be defined as

Ŷ i = argmax
ŷi

P (ŷi|X) ≈Mode(Yi), (1)

where i is a pixel of segmentation mask.

Epistemic uncertainty can be measured using Mutual Infor-
mationMI, which is more representative for the segmen-
tation problem, as it is the per-pixel classification [Hüller-
meier and Waegeman, 2021]. This measure is used in our
study and can be calculated for every pixel of the predicted
segmentation mask for the image X as below:

MI(Ŷ i, θ|D,X) = H
p(Ŷ i|X,D)

(Y i)−

−Ep(θ|D)(HŶ i|X,θ)(Ŷ
i)),

(2)

H(Ŷ i) ≈ −
M∑
m=1

p̂im ln p̂im, (3)

where D = {X1, ..., XK}, θ is the variational parameter set
with the dropout mask, qθ is the approximating distribution,
θ ∼ qθ, p̂im is the frequency of class m for i-th pixel of
segmentation mask.

Therefore, adding Dropout to a model and using it for the
sampling different Dropout masks θ ∼ qθ during inference
time is a way to obtain a Bayesian NN from any DNN.



Figure 1: DropFilter technique illustration on random filters
marked with red are dropped out.

2.2 DROPFILTER

DropFilter [Tompson et al., 2015], also referred to as Spatial
Dropout, or DropChannel has similar idea with the Dropout
scaled to convolutional filters level. DropFilter for a NN
layer l can be described as

zl = a((rF · F l) ∗ zl−1 + rb · bl), (4)

where a denotes an activation function, F denotes the con-
volution filter set, ∗ denotes the convolution operation, · de-
notes the element-wise product, zl is the l layer output, l−1
is the previous to l layer, b is the bias, rF ∼ Bern(1−p)Kl ,
rb ∼ Bern(1−p)Kl are the DropFilter vectors with Kl the
number of F filters and the DropFilter rate equal to p.

DropFilter can also be considered as paths suppression in
depthwise separable convolution module. It can be exem-
plified through treating each path in this module as a con-
volutional filter. Thereby, DropFilter can be generalized to
models that utilize depthwise separable convolutions, for ex-
ample, MobileNet [Howard et al., 2017] and Xception [Chol-
let, 2017]. Fig. 1 represents the DropFilter illustration and
Fig. 2 demonstrates its application to the depthwise separa-
ble convolution module.

3 MONTE CARLO DROPFILTER

Recently, [Zhang et al., 2019] proposed to use DropFilter
for Monte Carlo sampling and showed its advantages com-
pared to MC Dropout in terms of model calibration. In this
section we propose to apply MC DropFilter for epistemic
uncertainty estimation of models predictions for the brain
tumor segmentation problem.

To describe MC DropFilter, let a convolutional neural net-
work with two convolutional layers f(ω,X) be defined as:

Figure 2: DropFilter technique illustration on random paths
of depthwise separable convolution module marked with
red are dropped out.

f(ω,X) = a((rF
2

2 · F 2) ∗ a((rF
1

1 · F 1) ∗X+

+rb
1

1 · b1) + rb
2

2 · b2),

θ = {F 1, F 2, rF
1

1 , rb
1

1 , r
F 2

2 , rb
2

2 },

(5)

where F 1,F 2 denote the convolution filters (i.e. weight ma-
trices), ∗ denotes the convolution operation, · denotes the
element-wise product, X is the input image, b is the bias,
rF

1

1 , rb
1

1 ∼ Bern(1 − p)K1 , rF
2

2 , rb
2

2 ∼ Bern(1 − p)K2

are the DropFilter vectors with the DropFilter rate equal to
p.

Given the approximating distribution qθ(ω) we can sample
from it N times different DropFilter masks during inference
or testing time in the Monte Carlo manner forming Y =
{ŷ1, . . . , ŷN}. Y can be used then for the predictive mean
evaluation and epistemic uncertainty estimation the same
way with Eq. 1 and 2.

The network defined in Eq. 5 can be generalized to any
number of layers. The CNN with MC DropFilter applied
for convolutional layers at the testing time can be treated as
Bayesian NN similarly with MC Dropout.

As we show in Section 2.2, DropFilter is easily scaled to
the depthwise separable convolution module. Thus, in this
research we propose to use Xception [Chollet, 2017], which
is based on the depthwise separable convolution module, as
the first baseline architecture. Here, we demonstrate the in-
ference with the modified Xception module using DropFilter
technique (Fig. 3).

The second baseline model we chose is DenseNet [Huang
et al., 2017]. Both DenseNet and Xception can be considered
as mobile NNs and were successfully applied by Zeineldin
et al. [2020] for the problem of brain tumor segmentation.
As MC DropFilter application for DenseNet is less trivial
than for Xception, and can be illustrated by Fig. 1, here we
omit it.



Figure 3: Monte Carlo DropFilter technique illustration for
the depthwise separable convolution. Different DropFilter
masks are sampled at the testing time to form the mean
prediction and estimate epistemic uncertainty.

4 EXPERIMENTS

4.1 DATASET

We evaluated the models on BraTS 2018 dataset [Menze
et al., 2014, Bakas et al., 2018], which is the benchmark
for the brain tumor image problems (i.e. segmentation and
classification). It contains 44,175 multi-modal scans of pa-
tients with brain tumors. A sample consists of four channels
scan and a corresponding tumor label of size 256 × 256
of the axial view. Each scan consists of 4 modes, namely
T1-weighted (T1), post-contrast T1-weighted (T1c), T2-
weighted (T2), T2 Fluid Attenuated Inversion Recovery
(FLAIR), and acquired with different clinical protocols and
various scanners from multiple institutions. Labels include
whole tumor (WT), active tumor (AT) and tumor core (TC)
tissue. Here we only consider the WT segmentation problem
as the most challenging.

4.2 MODELS

The following model architecture was used for the brain
tumor image segmentation:

• Backbone subnetwork. As the backbone two neu-
ral networks were studied: Xception [Chollet, 2017],
DenseNet [Huang et al., 2017]. We chose them
due to their relative superiority to the other popular
lightweight CNNs used by researchers for our prob-
lem [Zeineldin et al., 2020].

• Feature Pyramid Network [Lin et al., 2017] which is
the U-Net-like subnetwork.

• Two “head” subnetworks: for the tumor and its bor-
der segmentation. The separating border segmentation
leads to better performance, according to [Seferbekov,
2018]. Hence, we used double head loss for training,
which is the combination of Dice loss and binary cross-
entropy, also proposed by [Seferbekov, 2018].

Two backbone NNs lead to two baseline model used:
Xception-based and DenseNet-based. For both models we

applied MC DropFilter and MC Dropout for comparison. In
both Xception and DenseNet models with MCDO Dropout
is applied to each convolutional layer, while in MCDF mod-
els DropFilter is applied for each convolutional layer or
convolutional+BatchNorm layers. Both MCDO and MCDF
techniques can be implemented trivially in any modern NN
framework.

Labels preprocessing. Following the idea from [Sefer-
bekov, 2018], we used separate mask border predictions
along with the whole mask prediction (whole tumor), which
was proven to significantly improve final metrics. For this
purpose, we preprocesed the initial labels and made the
models to predict two masks at the same time. The auxiliary
model head for the border prediction aims to train the model
more effectively. Thus, the border prediction is not used for
metrics evaluation.

Transfer learning.

We pre-trained all the models on ImageNet dataset, which
is a common practice in various computer vision problems.
ImageNet is the 3-channel images dataset. At the same time,
the dataset used in our experiments includes 4 MRI modes.
Therefore, the transfer learning for the forth channel was
performed. The transfer learning required the modifications
of the network on the framework level, to train it. To our
knowledge, there is no standard interface for such modifica-
tions. There are several options in the forth channel weights
initialization. In this work, we performed the forth channel
initialization with the first channel weights.

4.3 EXPERIMENTAL SETUP

We implemented the baselines and the proposed models
in the Tensorflow 2 framework. For experiments, we used
single GeForce GTX 1080 Ti GPU per each model’s training
and evaluation. Training of the single NN took from 2 to 3
days depending on the architecture of the model.

For a quantitative evaluation Dice coefficient was used [Zou
et al., 2004]. Based on it, the training was performed using
Dice loss, which is calculated as 1−Dice, combined with
the binary cross-entropy.

We used weight decay equal to 0.0001 and Adam optimizer
with learning rate equal to 0.0001. The train/test/validation
BraTS split was 75/15/10, respectively. All the reported
results were obtained on the validation set.

For MC techniques, the number of samples per imageN was
equal to 20 according to the experimental results in [Wang
et al., 2019a]. For the model calibration we used three met-
rics, namely Negative Log Likelihood (NLL) [Loquercio
et al., 2020], Brier score (BS) [Ovadia et al., 2019] and Ex-
pected Calibration Error (ECE) [Naeini et al., 2015], which
are standard for the calibration evaluation [Ashukha et al.,
2019, Zhang et al., 2019]. For the uncertainty estimation we



used Mutual Information described in Section 2.

5 RESULTS

5.1 QUANTITATIVE RESULTS

Table 1 presents the evaluation results of the MCDF mod-
els compared to the baseline models and the MCDO
models. The experiments on BraTS were performed with
Dropout/DropFilter rates equal to 0.3. The table shows that
the MC DropFilter models significantly outperformed the
MC Dropout models by Dice coefficient and also by NLL
and BS calibration metrics, which confirms that Dropout
rather harmful for the convolutional filters. This answers the
RQ1. Surprisingly, the MCDO models outperformed the
MCDF models by ECE. This issue requires further research.

In addition, the MC DropFilter models significantly outper-
form the baseline models by Dice coefficient, which answers
the RQ2. Finally, epistemic uncertainty estimation seems
to decrease False Positive (FP) rate compared to baselines,
which is crucial for our problem.

Table 1: Obtained results of the proposed MC Dropfilter
(MCDF) technique compared to MC Dropout on two base-
lines, based on Xception and DenseNet NNs, on BraTS
2018 dataset. WT DC is Whole tumor Dice coefficient. NLL
is scaled ×102, BS and ECE are scaled ×103.

Model WT DC,% NLL BS ECE

Xception 84.71 2.92 - -
Xception MCDO 81.70 1.75 3.1 0.8
Xception MCDF 85.39 0.98 2.4 1.3
DenseNet 85.06 2.69 - -
DenseNet MCDO 85.05 2.01 2.2 0.2
DenseNet MCDF 86.54 1.73 2.2 0.4

5.2 QUALITATIVE RESULTS

Fig. 4 and 5 outline the comparison of the Mutual Infor-
mation (MI)-based uncertainty on BraTS images for MC
Dropout (Fig. 4) and MC DropFilter techniques (Fig. 5). As
can be observed, the lower uncertainty values (where the
model is more confident) correspond to the brighter contrast
values of tumor on the input MR image, while the higher
values are likely obtained near the tumor borders. Fig. (5)
shows that MCDF technique provides better model calibra-
tion, than MCDO: the tumor borders, presented by MCDF
epistemic uncertainty, are more precise and more clearly
expressed. This confirms the answer to the RQ1.

Such an uncertainty information can be decisive in the dis-
ease diagnosis and treatment. For example, the uncertainty

Figure 4: Examples of uncertainty estimation by MC
Dropout technique based on the Mutual Information mea-
sure for BraTS 2018 dataset. Different MRI slices with
prediction results are presented in columns. The first row
demonstrates the input MR images of 4 modes combined
in one, the second one presents the target masks, the third
one presents the predicted mean masks, and the fourth one –
the epistemic uncertainty masks predicted by MC Dropout
technique, estimated based on Mutual Information.

visualization can help doctors recognize cases, when the
deeper tumor investigation is required.

6 CONCLUSION

In the work presented, we have studied the application of
uncertainty estimation for the brain tumor MRI segmenta-
tion problem. We have proposed to apply MC DropFilter
technique for estimating epistemic uncertainty and com-
pared this technique with classical MC Dropout. As the
baselines we implemented two models, namely Xception
and DenseNet, and evaluated them on BraTS 2018 dataset.

Xception MCDO and Xception MCDF models achieved
81.7% and 85.39% of Dice coefficient on BraTS dataset, re-
spectively. DenseNet MCDO and Densenet MCDF models
achieved 85.05% and 86.54% of Dice coefficient on BraTS
dataset, respectively.

For the calibration ability evaluation, we performed MC
Dropout/DropFilter multiple forward passes (20 times) dur-
ing inference time. Xception MCDF provided the best NLL
and BS metrics compared to Xception MCDO: 0.0098 and
0.0024, respectively. DenseNet MCDF also provided the
best NLL and BS compared to DenseNet MCDO: 0.0173
and 0.0022, respectively. Hence, as Xception MCDF as well
as DenseNet MCDF outperformed other models, they were
selected as the best solutions.

Thus, the results showed that MC DropFilter is quite ef-



Figure 5: Examples of uncertainty estimation by the pro-
posed MC DropFilter technique based on the Mutual In-
formation measure for BraTS 2018 dataset. Different MRI
slices with prediction results are presented in columns. The
first row demonstrates the input MR images of 4 modes com-
bined in one, the second one presents the target masks, the
third one presents the predicted mean masks, and the fourth
one – the epistemic uncertainty masks predicted the pro-
posed MC DropFilter technique, estimated based on Mutual
Information.

fective for the problem of brain tumor image segmentation
and improves model calibration. This technique can be use-
ful for a wide range of applications, not limited to medical
imaging.

In the future, further improvements and experiments are
planned such as the developing of the Dropout rate impact
on MC Dropout and MC DropFilter. Furthermore, we are
planning to use NASNet [Zoph et al., 2018] as backbone
and adopt ScheduledDropPath technique for epistemic un-
certainty estimation.
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