
Optimizing a Diagnostic Classifier with Sparse, Unsupervised Data

Abstract

This is exploratory work in building diagnostic
models with sparse, unsupervised data that relies
on a combination of conventional Bayes networks
model structure elicitation, and optimization-based
learning methods familiar in current machine learn-
ing. We have applied this to building a fault clas-
sification model for network failures that occur in
the network connecting block storage units and
servers that host virtual machines (VM) in a cloud
data center.
We have developed a novel approach to learning
the model parameters by use solely of the observed
signal data. The optimization criterion is the er-
ror between the pair-wise conditional probability
distribution of the observed variables and their dis-
tribution as predicted by the model. We have ex-
perimented with different combinations of error
functions, more or less sparse bipartite structures,
and algorithms for different optimization methods.
Once optimization has converged we evaluate the
model diagnostic accuracy by running an existing
rule-based model on the same data. Gratifyingly
the optimized model accuracy shows substantial
improvement despite the lack of supervision in the
training data.
We’ve demonstrated that this method on an ex-
ample where an existing set of procedural rules
serve as a gold standard to compare to the model
inference. We can achieve high accuracy—this is
largely due to the local independence properties
of the diagnostic Bayes network—it’s possible to
optimize faults individually. This work is still ini-
tial stages; in this paper we share our insights and
speculate how this process may be improved upon.

1 INTRODUCTION

The challenge of building classification models when data
is limited and lacks classification labels is not new, and
has been the subject of research going back to the origins
AI. Bayesian methods promise the ability to combine di-
verse sources of knowledge when empirical data is limited,
yet standard methods to exploit this ability are not widely
applied. This is exploratory work in building diagnostic
models with sparse, unsupervised data that relies on a com-
bination of conventional Bayes networks model structure
elicitation with optimization-based learning methods famil-
iar in current machine learning. We have applied this to
building a fault classification model for network failures
that occur in the network connecting block storage units
and servers that host virtual machines (VM) in a cloud data
center. We have demonstrated a method to improve elicited
Bayes network models by use of sparse, unlabelled data.

Our Bayes network diagnostic model is generated in part
from a data-set of observed monitoring signals in combina-
tion with a bipartite network structure elicited from a mix of
engineering domain knowledge and connectivity constraints
derived from the network connectivity. Observed signal vari-
ables make up the lower level of the bipartite graph, the
upper level being unobserved root-cause variables, each as-
sociated with a subset of signals indicated by arcs from the
root-cause nodes to the signal nodes. The model parameters
consist of the noisy-or reliability and "leak" entries in the
signals’ conditional probability tables (CPTs), and are ini-
tially set qualitatively to values that respect the sign of the
causal relationships.

We have developed a novel approach to learning the signal
node CPT parameters by use solely of the observed sig-
nal data. Given a bipartite network structure suggested by
the domain architecture, we optimize the signal node CPT
parameters to best approximate the distribution of the ob-
served signal data. The optimization criterion is the error
between the pair-wise conditional probability distribution
of the observed variables and their distribution as predicted
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by the model. We have experimented with different combi-
nations of error functions, with more or less sparse bipartite
structures, and with algorithms for different optimization
methods. Once optimization has converged we evaluate the
model diagnostic accuracy by comparing it against an ex-
isting rule-based model on the same data. Gratifyingly the
optimized model accuracy shows substantial improvement
despite the lack of supervision, i.e., labels for the root-cause
nodes, in the training data.

Building bipartite diagnostic networks with unlabelled data
is a type of latent-variable problem. Dependencies observed
among observations suggest unobserved common causes
that condition the observations. Previous researchers in this
field have recognized the benefit of the additional constraints
offered by assuming a Bayes network structure. Halpern and
Sontag [2013] present a polynomial-time method that learns
network parameters for a suitably sparse bipartite network
structure. Taking this idea one step further, independencies
among observable variables suggest the structural properties,
such as the absence of arcs in the Bayes network. Šingliar
and Hauskrecht [2006] develop a variational optimization
method, assuming initially a fully connected bipartite net-
work that recovers not only the model parameters, but also
the network structure. We borrow notions from both authors,
but focus on understanding how local properties of the op-
timization problem contribute to accuracy improvements,
in a case where data-sets are not only missing labels for
root-cause variables, but are sparse.

1.1 A THREE NODE EXAMPLE

The assumed sparse bipartite network partially factors into
subsets of one root-cause node and the observable nodes
that are its direct descendants. The simplest example con-
sists of 3 binary-valued nodes; the root-cause C, and two
observations, B and D, as shown in Figure 1. We use this
network fragment to show how the optimization method ap-
plies locally. In the fragment we can observe the conditional
probabilities of the observables on each other, which can
be compared to the empirical values of these probabilities
computed from the data. The optimization problem is to
minimize an error function of these conditional probabilities
in the network versus the empirical values, by adjusting the
parameters in the network.

As is a common convention in diagnostic models, only one
state, detect, is instantiated. Since there are no missing
values in the data, without loss of generality, when an obser-
vation is normal, the node is left uninstantiated. Computa-
tionally this reduces the degrees of freedom in the problem,
and implies the observables’ conditional probabilities form
a p by p matrix with p(p−1) degrees of freedom from the
observables Si for i = 1 · · · p. In this case the conditional
probability matrix of P(Si = detect |S j = detect) is

Figure 1: An Example of a Network Fragment.

just 2 by 2:

( B D
B 1 0.617
D 0.889 1

)

Note that this matrix, with 1s along the diagonal is not sym-
metric. The problem, as stated is under-determined, since
the error is a function of just these 2 terms, and the net-
work has 5 free parameters. To make the problem tractable,
the root-cause prior is assumed constant, and only one pa-
rameter for each observation is varied—the “reliability" of
the detect state—the “leak” assumed to be small and
constant. These assumptions are reasonable for this domain.

In this network fragment is it possible to solve for the off-
diagonal elements of the observables’ conditional probabil-
ity matrix as a function of the node parameters. Let~λ be the
vector P(B |D = detect), and ~c be the root-cause prior
P(C = absent |C = present), then the π-message inci-
dent on the CPTD matrix is just their dot product, ~π =~λ •~c,
hence the posterior on D results from this matrix multiplica-
tion:

P(D |B = detect) =CPTD~π

.

Despite having restricted the number of parameters, this
equation raises an additional concern. One can see that for
such a network fragment treated in isolation, each element
in the conditional probability matrix is a linear function of
the adjustable network parameters, (or more precisely is
monotonic once normalized). So considered individually
computed posteriors do not have an inflection point, and
hence may not have an internal solution in the interval (0.1).
Because of this there is the undesirable possibility that the
optimization routine may settle on the interval’s extreme
values and set the parameter on the interval boundary. The
ramifications of this will be discussed in the paper’s final
section.
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2 THE DATA CENTER LOSS OF
STORAGE CONNECTIVITY (LSC)
PROBLEM DOMAIN

Network diagnostics are characterized by multiple layers
of abstraction, from the physical to the application layer,
which generate a flood of monitoring data. We model an
architecture where computing equipment, e.g. servers and
disk storage, are separated in different racks in the data cen-
ter. Each is networked by a“top of rack" (TOR) switch that
in turn connects to higher level network switching layers.
The model focuses on localizing lack-of-connectivity faults
that occur either in a component of the server host, or at the
TOR that connects the host to the rest of the network, or on
the virtual machines (VMs) running on the host. Despite
the high-rate data feeds, there is uncertainty about the layer
where a fault occurs, it possibly being in the data monitoring
layer itself.

As part of the system, the diagnostic model is embedded in
the data center monitoring pipeline from which it receives
the current signal values. When the VM senses a data I/O
failure—a persistent loss of connectivity—the VM re-boots
itself. This reboot event, which is intended to reset the sys-
tem, triggers the model diagnostics to localize the fault,
and return a list of the possible causes ranked by posterior
probability of failure.

Current diagnostics are provided by a rule-based system
that is straightforward, easy to understand, but requires ex-
tensive effort and time to build, also it is hard to extend to
other events due to its explicit tree structure and lack of an
explicit causal representation. Therefore, our data-driven
Bayes network is intended to minimize labor effort and to
replace a hard-to-maintain procedural rule-based diagnostic
tool. The current rule-based decision tree method for the
fault diagnosis is based on the experts’ knowledge on the
network architecture and the relative priorities of the root
causes. We exploit the structure of the current rule-based
decision tree from which we derive the set of root causes,
and a rough idea of their relevance to different signals that
suggests the connectivity of the Bayes network.

3 THE STRUCTURE OF THIS
DIAGNOSTIC BAYES NETWORK

Mathematically a Bayes network is a sparse graph that
factors the joint probability of a set of discrete variables.
Well known, exact algorithms are available to run inference
on such graphs. In this diagnostic bipartite Bayes network
model we distinguish two classes of variables, the observed
signals and the inferred (but unobserved) root-causes. Infer-
ence consists of computing the ranked probabilities of the
root-causes given the observed state of the signals.

An advantage of Bayes networks we exploit is their ability

to incorporate diverse sources of information into a consis-
tent model. Statistical data, system architecture, engineering
judgment, and incremental adjustments based on experience
can be applied to learning a Bayes network. Here’s how we
take advantage of this. The network’s variables are borrowed
from the rule-based model. The branching structure of the
decisions suggest which observables may relate to which
root-causes. Furthermore the sequence that root-causes are
addressed in the rule-based tree is based on the engineer’s
judgment of “priority" that we interpret as the relative prior
probability of each fault. From the physical layout, the data
path connectivity implies that all root-causes associated with
components along the path form a noisy-or with the signal
that checks connectivity. For computational convenience we
unroll the noisy-or node into an equivalent chain of noisy-or
nodes. Also, in many cases each root-cause has an observa-
tion paired with it. These hints, together with the observed
dependencies in the signal data guides the construction of
the structure of the diagnostic Bayes network.

3.1 AVAILABLE SIGNAL DATA

Our training data set consists of approximately 1500 sam-
ples of re-boot events collected over the course of a month
from which eight binary feature values are derived from the
raw monitoring time-series within an interval around the
event. These eight signals (Signal1, ...Signal8) are collected
from the monitoring data of the components that are possibly
involved in the failures using the same thresholds applied
for the rule-based system to indicate a detection. These the
corresponding components (root-causes) to these signals are
denoted as “Tor_rc1, Tor_rc2, NIC_rc1, NIC_rc2, NIC_rc3,
NIC_rc4 and Host_rc1”, where TOR (Top Of Rank switch),
NIC (Network Interface Card) and Host (Host machine) are
three main sub-systems.

Typical of diagnostic domains, the fault prevalence is un-
balanced, with the most common fault appearing several
hundred times, and the least common occurring just in sin-
gle digits. To evaluate the model accuracy after the model
is learned, labels are added to the data set by running the
rule-based model. Of course these labels are not seen in our
model optimization step.

4 OPTIMIZATION TECHNIQUES FOR
UNSUPERVISED PARAMETER
LEARNING

Our premise is that the elicited Bayes network structure,
when combined with the observed signal data is sufficient to
learn the complete model. We formulate the problem as one
of optimizing the parameters in the conditional probability
tables (CPTs) for the observed nodes to be consistent with
the dependencies between observed signals. For purposes
of comparing the fit of the model to the data we consider

3



Figure 2: The Bayes network used in this example

a reduction of the joint probability of the observables by
computing all pair-wise conditional probabilities between
observable variables. An alternative would be to compute
the full joint of the observables, but the sparseness of our
elicited network structure suggests this may not be necessary.
As described the pair-wise conditional probabilities form
two matrici, named D for the data and B for the model.1 The
optimization error function measures the difference between
them. These two matrices are:

• D: p× p conditional probabilities matrix, of which
the i jth element represents the conditional probability
P(Signali|Signal j) calculated from the empirical data
directly. It describes the ground truth of the signals’
dependence in the data.

• B: p× p conditional probabilities matrix , of which
the i jth element represents the conditional probabil-
ity P(Signali|Signal j) propagated by the estimated
Bayesian Network. It describes the signals’ depen-
dence derived by the Bayesian Network with estimated
parameters.

By minimizing this difference between these matrici, the
solution could be regarded as a kind of semi-supervised
learning, without the labeled root-cause data.

The options of the loss function to capture the difference
between two matrices include:

• sum of square error, ∑i6= j (bi j−di j)
2

• chi-squared statistics
• K-L divergence

The options of the optimization algorithms include:

• Bisection line-search
• Grid-search
• Gradient free optimization: Nelder–Mead method

1The matrici D and B are not to be confused with the nodes D
and B from the example.

Optimization by Line-search and Grid-search optimized
the parameters one at a time, sequencing through the sig-
nal nodes, shuffling the order in different runs. For Nelder-
Mead, the optimizer was given the full set of network pa-
rameters with their constraints; these runs took noticeably
longer. Some runs terminated either when the optimization
function converged, or in cases of early-stopping, when a
set number of iterations completed. In most cases we saw a
measurable improvement in the test accuracy after parame-
ter optimization, but in some cases, the solution “collapsed",
dedicating all cases to just a few of the most prevalent faults.
We found similar results on more or less sparse versions
of the model, and with greater or fewer root-cause nodes.
In response we resorted to chi-squared and KL divergence
error functions that should be more sensitive to small valued
probabilities, and to global optimization, which should not
get stuck in local optima found by individual line search,
but neither of those alternative improved results, in general.

5 INFERENCE RESULTS

Over the combinations of optimization criteria and al-
gorithms, after the optimization step the best results for
the current model was found using Sum-of-squared er-
ror and Bisection line-search resulting in a decrease in
the error between D matrix and B matrix from 0.084 to
0.047. One can see the details of the improvement in the er-
ror by side by side comparison of the observation pair-wise
conditional probabilities computed from the data, with that
of the Bayes network after parameter optimization.

The heatmap of the D matrix is shown in Fig 3, and that of
B matrix in the heatmap of Fig 4. One can see that after the
optimization, the magnitude of probabilities in B is close to
the magnitude of probabilities in D. For example, the con-
ditional probabilities of “HighCpu” on other signals are all
close to 0 in both heatmaps, while the conditional probabili-
ties of “Host2TorPingmeshDrops” on other signals are all
relatively larger in both heatmaps. However, as constrained
by the presumed network structure the final error after the
optimization step is still appreciable. On closer examination,
contrary to what one might expect, the tendency for rows in
the B to take on uniform values implies that the algorithm
has simplified the model by effectively zeroing-out some of
the model’s arcs.

5.1 INFERENCE ACCURACY – COMPARISON
WITH RULE-BASED RESULTS

The improvement in accuracy gained by optimization that
lead to more accurate inference by the Bayes network, as de-
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Tor_rc1 Tor_rc2 NIC_rc1 NIC_rc2 NIC_rc3 NIC_rc4 Host_rc1
Tor_rc1 673 23 0 0 0 0 1
Tor_rc2 0 136 0 0 0 0 25
NIC_rc1 0 14 38 0 0 20 26
NIC_rc2 0 0 0 0 0 2 26
NIC_rc3 0 3 0 0 4 0 7
NIC_rc4 1 1 0 0 0 3 0
Host_rc1 0 0 0 0 0 0 132

Table 1: Confusion matrix of the optimized Bayesian Network

Tor_rc1 precision: 0.999 recall: 0.966 F1: 0.982
Tor_rc2 precision: 0.768 recall: 0.845 F1: 0.805
Host_rc1 precision: 0.608 recall: 1.0 F1: 0.756
NIC_rc1 precision: 1.0 recall: 0.388 F1: 0.559
NIC_rc2 precision: 0.12 recall: 0.6 F1: 0.2
NIC_rc3 precision: 0.0 recall: 0.0 F1: 0.0
NIC_rc4 precision: 1.0 recall: 0.286 F1: 0.444

Table 2: Precision, Recall and F1 score of each category

Figure 3: D matrix: empirical conditional probability matrix
driven from the data

Figure 4: B matrix: estimated conditional probability in-
ferred from the estimated Bayesian Network

termined by comparison with the rules-based model. Corre-
spondingly accuracy of the optimized model measured
against the rule-based decision tree derived labels is
86.87%. compared to a pre-optimized model of roughly
50%. The confusion matrix in Table 1 shows the results for
all root-causes. The root-causes with higher prevalence have
higher accuracy such as Tor_rc1, Tor_rc2 and Host_rc1.
Accordingly, the rarer root causes are more likely to be
classified incorrectly.

Besides the overall accuracy, the results of other measure-
ment metrics (Precision, Recall and F1) in Table 2 also agree
on our findings. All metrics are substantially higher for high-
prevalence categories (Tor_rc1, Tor_rc2 and Host_rc1).

6 FUTURE WORK

By constructing an a priori Bayesian network structure with
domain knowledge, and then learning the parameters by op-
timizing the loss function over observed data, we’ve demon-
strated a promising approach that can correctly identify most
of the root causes in the real scenario when compared with
tediously generated rules-based model. We’ve tested the pre-
sumption that the achieved accuracy in light of sparse data
is due to the local independence properties of the diagnostic
Bayes network making it possible to factor the optimization
among faults.

However, this method is still in early stages and has many
limitations. During the optimization step, the optimal value
of conditional probability table (CPT) parameters typically
take on extreme values in the probability interval. Since as
noted, for any one parameter, the value of the corresponding
observation conditional probability is monotonic, there is
a tendency for the optimization algorithm to get stuck at
extremes of the intervals. This lack of robustness in the opti-
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mization problem formulation deserves further investigation.
Another plausible explanation is that the data used for the
rules-based model presumes a deterministic prediction (e.g.
it predicts one outcome, effectively with probability one),
and we just might be seeing the probabilistic model mimic
this behavior. Additionally, since our model is largely singly
connected, it may not be rich enough to find internal param-
eter values produced by parameter interactions. However
experiments to date with multiply connected models have
not shown improvement.

To improve the work there are challenges we are working
on. First our current optimization methods tend to collapse
infrequently observed signal combinations into more com-
mon cases. This may have a small effect on overall accuracy,
but reduces the ability to distinguish rare faults. We are
investigating better local optimization methods—selecting
subsets of parameters to optimize at one time, based on net-
work structure. Secondly we should be able to infer network
sparsity based on zero entries in the D matrix. An initial
approach, to derive independencies from the structure of a
Bayes network learned just among the signals implied a co-
pious number of arcs. In contrast, current experiments have
found best results with very sparse structures, bordering on
singly connected. The proper degree of sparsity suggested
by the data remains an open question. Despite the limitations
of the current method, the results show promise of practi-
cal methods for combined judgment-based and empirically
data-driven Bayes network modeling.
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