
Title: Bridging the gaps in test interpretation of SARS-CoV-2 through Bayesian network modelling 
Authors: Yue Wu1, David Foley2, Jessica Ramsay3, Owen Woodberry4, Steven Mascaro4, Ann E  
Nicholson4, Tom Snelling1,2,3,5,6 
Affiliations 

1. School of Public Health, University of Sydney, Camperdown, New South Wales, Australia 
2. Department of Infectious Diseases, Perth Children’s Hospital, Perth, Western Australia, Australia 
3. Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western 

Australia, Australia 
4. Department of Data Science & Artificial Intelligence, Monash University, Clayton, Victoria, Australia 
5. School of Public Health, Curtin University, Bentley, Western Australia, Australia 
6. Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory Australia 

 
Extended abstract 
Bayesian network (BN) models have been used within healthcare to bring clarity to complex problems.1 In 
the absence of an established gold standard, an understanding of the testing cycle from individual 
exposure to test outcome report is required to guide the correct interpretation of SARS-CoV-2 (COVID-19) 
reverse transcriptase real-time polymerase chain reaction (RT-PCR) results and optimise the testing 
processes.2 A wide variation in rates of false negatives has been reported, ranging from 1.8 to 58%;3 this 
variability may be attributable to heterogeneity in disease prevalence, patient age, timing of testing, type of 
specimen, other components of the pre-analytical phase and the RT-PCR assay employed across studies.4 
We use the BN modelling approach to construct a comprehensive framework for understanding the real-
world predictive value of individual RT-PCR results. 
  
We elicited knowledge from domain experts to describe the test process through a facilitated group 
workshop. A preliminary model was derived based on the elicited knowledge, then subsequently refined, 
parameterised and validated with a second workshop and one-on-one discussions. Parameterisation of the 
model was conducted based on the literature and input from experts. 
 
Causal relationships elicited describe the interactions of pre-testing, specimen collection and laboratory 
procedures, and RT-PCR platform factors, and their impact on the presence and quantity of virus thus the 
test result and its interpretation. As shown in Figure 1, the outcome model consists of 32 nodes in total, 
including 5 pre-testing factors (pink), 13 variables relevant to laboratory procedures (orange), 10 nodes 
(yellow) sequentially describing the trajectory of SARS-CoV-2 virus from the initial exposure event to final 
laboratory detection, and 4 summary nodes (blue) created for modelling purpose. 20 variables can be 
directly mapped to real-world observations therefore used as input variables if available, and the rest 12 
variables are latent including the main output variable ‘predicted classification’ (node 31) which describes 
the probability of the classification being truly positive, truly negative, falsely positive, and falsely negative.  
 
By setting the input variables as ‘evidence’ for a given subject, four scenarios were simulated to 
demonstrate potential uses of the model. In Figure 1, some input variables were entered to illustrate a 
scenario where a tested individual who has negligible known recent viral exposure (node 1) and 
experiences upper respiratory symptoms (node 32) but tested negative (node 30), the probability of a 
falsely negative result is 14.6% (node 31) if the person resides in a high viral prevalence setting (5%). The 
corresponding probability drops to 0.3% if it were a low viral prevalence setting (0.1%). 
 
The core value of this model is a deep understanding of the total testing cycle, bridging the gap between a 
person’s true infection status and their test outcome. This model can be adapted to different settings, 
testing modalities and pathogens, adding much needed nuance to the interpretations of results. This model 
requires validation with local, real-world datasets prior to application. We intend for future applications to 
integrate with other models that detail local epidemiological factors such as those developed by Fenton et 
al.5 to account for the complex and dynamic interactions between individual-level factors and population-
level behaviours that influence the transmission and prevalence of SARS-CoV-2. 
 



Figure 1. The testing model 
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