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Abstract

The two formalisms most widely used for the rep-
resentation and analysis of decision problems in
medicine are decision trees and Markov flat mod-
els, which seriously limit the complexity of the
problems that can be addressed. In contrast, prob-
abilistic graphical models (PGMs) can represent
the state and the evolution of the system (the pa-
tient) using much richer structures, but they are
rarely used for economic evaluations in medicine
given that, until recently, they could not perform
cost-effectiveness analysis (CEA). In this paper we
summarize the research done by our group, devel-
oping new types of PGMs and new algorithms for
CEA and implementing them in OpenMarkov, an
open-source tool especially designed for medicine.

1 INTRODUCTION

Due to the rapid increase of medical expenditures in all
countries, rich and poor, every health system must deter-
mine whether the benefit of each intervention outweighs
its economic cost. The main tools that health economists
use for cost-effectiveness analysis (CEA) are decision trees
(DTs) [Drummond et al.l 2015]] and flat Markov models,
usually implemented in Excel or in the commercial software
TreeAge. By “flat” we mean that the system—the patient, in
this case—is modeled with a set of mutually exclusive states.
This imposes a serious limitation in the complexity of the
problems that can be addressed. In particular, the size of a
DT grows exponentially with the number of variables, even
in the unicriterion case, and much faster for CEA because
the standard algorithm [Raiffa and Schlaifer} [1961] cannot
evaluate DTs with embedded decision nodes, which are
those other than the root of the tree [[Kuntz and Weinstein,
2001}, |Arias and Diez, [2014]]. Flat Markov models, in turn,
cannot represent multiple properties of the system, because

having mutually exclusive states amounts to representing
the system with a single variable, and they often require
“tunnel states” [Drummond et al.; 2015]] and other modeling
tricks to represent the complexity of real-world systems.

In contrast, probabilistic graphical models (PGMs) [Koller
and Friedman, |2009] can represent the state of the system
(the patient) using much richer structures. For example,
Bayesian networks can represent the dependencies and inde-
pendencies among the variables that model a system, while
DTs cannot. Similarly, a dynamic Bayesian network can
explicitly represent different features of the system and their
evolution by having several variables for each time slice,
linked by causal intra- and inter-temporal edges, while flat
Markov models (basically equivalent to Markov chains)
cannot.

Even though many real-world PGMs have been developed
for medical problems, probably more than for any other field,
the uncertainty in artificial intelligence (UAI) community
has in general overlooked the relevance of CEA in medicine,
and they have only addressed unicriterion problems.

2 PGMS AND ALGORITHMS FOR CEA

Models for CEA involve three types of entities: decisions,
chance variables (for representing uncertain outcomes), and
values (for representing the decision maker’s payoffs, with
two criteria: cost and effectiveness). For this reason, DTs
have these three types of nodes , the same as IDs [Howard
and Matheson, |1984]]. Given that the standard algorithm for
IDs could only evaluate unicriterion models, we developed
an algorithm for CEA, with two versions, based on variable
elimination and arc reversal, respectively [[Arias and Diez|
2015]]. This way we could perform a CEA for Mediastinet
[Luque et al.,|2016]), an ID for lung cancer whose equivalent
DT contains more than 10,000 branches.

The main limitation of IDs is that they can only represent
symmetric decision problems [Diez et al.,[2018]]. In particu-
lar, they require a total ordering of the decisions. This was
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a problem when building Mediastinet because the pulmo-
nologist collaborating in the project was uncertain about the
optimal order of the tests. For this reason, we introduced
introduced decision analysis networks (DANSs), which, in
addition to representing all symmetric problems as easily as
with IDs, can also model and solve asymmetric problems
[Diez et al.,|2018]|]. We have recently published an algorithm
for CEA with DANSs [Diez et al., [2021]], with which we
could find the optimal order of the tests for the mediastinal
staging of lung cancer, with cost-effectiveness criteria, using
a DAN version of Mediastinet.

Another limitation of IDs is that they cannot model the evo-
lution of a system. In turn, PGMs that model time explicitly,
such as Markov decision processes (MDPs) and partially
observable MDPs (POMDPs), could not perform CEA. For
this reason we developed Markov influence diagrams [Diez
et al., 2017, which have three types of nodes, like IDs, and
discretize the time by setting a “cycle lenght”, like MDPs
and POMDs, but differ from them in the assumption that
decisions are atemporal. In addition to creating MID ver-
sions of some Markov models published in the literature,
we have also developed new MIDs for several medical prob-
lems, such as malignant pleural effusion [Bermejo et al.,
2015]] and bilateral cochlear implantation [Pérez-Martin
et al.,[2017].

All these models have been built with OpenMarkov, an open-
source software tool implemented in Java, and most of them
are available in ProbModelXML, a format for encoding
PGMs.
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