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1 EXTENDED ABSTRACT

In today’s world, it is becoming increasingly important
to have the tools to understand, and ultimately to predict
the response of ecosystems to disturbance [Steffen et al.|
2018]. However, understanding such dynamics is not sim-
ple. Ecosystems are a complex network of species inter-
actions, and therefore any change to a population of one
species will have some degree of community level effect
[Stafford et al., 2013]]. Computational inference of complex
networks presents an efficient route to reveal complex inter-
actions such as those within an ecosystem and have been
demonstrated to work on some natural complex systems.
For example, the use of Bayesian networks (BN) has seen
successful applications in molecular biology and ecology,
where it was able to recover known links in the respective
systems it was applied to [Chen and Mar, [2018], [Friedman
et al., 2000, Hecker et al., 2009, Milns et al., 2010, Mitchell
et al.,[2021].

A key strength of BN is the ability to at least semi-quantify
the strength of interactions between variables (or species).
This can be done by utilizing the influence score [Yu et al.,
2004] and the mutual information (MI). Here, the influence
score represents the direction and magnitude of influence,
where scores range from -1 to 1, with a score of exactly
0.0 representing non-monotonic (e.g. hump- or U-shaped)
influence. This can be complemented with the MI, which
measures the degree of mutual dependence between two
variables, where it quantifies the amount of information ob-
tained about one random variable through the observation of
another random variable. Using this information, it follows
that relative variable importance with respect to a certain
variable of interest can be inferred from the revealed net-
work. This has two key implications. Firstly, knowing the
relative interaction strength of certain species in relation
to others is invaluable in the field of ecology. For example,
knowing the strength of interactions between predator, prey
and competitors would give a clear understanding of how
ecological communities are structured and regulated. Sec-

ondly, using the structure of the revealed network via the
Markov blanket to infer the relevant variables in relation to
a target variable could potentially serve as a novel variable
selection tool in the field of machine learning. To this end,
we evaluate the potential usefulness of BNs in two aspects.
Firstly, we apply BN inference on species abundance data
from a rocky shore ecosystem in Scotland, a system with
well documented links, to test the ecological validity of the
revealed network. Secondly, we evaluate BNs as a novel
variable selection method to train an artificial neural net-
work (ANN) for each component species of the network.
To evaluate the effectiveness of BN as a variable selection
method, we compare the performance of the ANN with and
without the BN-based variable selection. Finally, to bench-
mark this approach against previous methods, we compare
the performance of the ANN with variable selection against
a generalised linear model (GLM) with variable selection,
where variable selection has been performed by the BN.

The application of Bayesian networks to rocky shore ecosys-
tems predicted relationships between species well and pro-
vided relative weights to indicate the importance of the in-
teractions. Although these results are not those expected to
be obtained immediately after experimental manipulations,
these results match what one would expect from a ‘static’
rocky shore system (i.e. those which are in a ‘stable state’
rather than those adapting post experimental disturbance).
For example, the grazing relationships revealed from the
network was consistent with prior knowledge as macroal-
gae has been documented to provide food (via spores) and
shelter for grazing snails, whilst simultaneously acting as
a buffer from wave action [[Norton et al., [1990]. Here, a
positive link was found between grazers and macroalgae—
however, in a dynamic system with the consideration of time,
we would also expect grazers to reduce the level of establish-
ing macroalgae [Hidalgo et al., [2008]]. Therefore, it could
also be argued that there should be a negative link found
between grazers and macroalgae. Given that sampling oc-
curred at a time where macroalgae had already established,
these patches therefore acted as a refuge for littorinids. This
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led to a positive link being recovered, which was consis-
tent with expectations for areas with established macroalgae
[Norton et al.l [1990].

When utilizing the results from the BN as a variable selec-
tion tool to train ANNS, there were general improvements
to model performance in ANN models with variable selec-
tion compared to models with no variable selection. This
difference was significant for barnacles and macroalgae.
From our models, there was a clear distinction of predictive
performance of sessile species (barnacles and macroalgae)
and mobile species (limpets and littorinids), where models
of sessile species performed better than models of mobile
species. From a causal perspective, this would make sense.
Given the barnacles and macroalgae confer alternative as-
semblages on the rocky shore, the presence of one sessile
species has strongly affects the presence of another. How-
ever, it should be noted that physical abiotic factors such as
wave exposure and site angle also have a strong influence on
the distribution of these sessile species. Here, while species
count data was sufficient in training an accurate model for
sessile species, the lack of physical abiotic factors limited
ability to fully capture the variation in grazers. Factors such
as exposure to wave action, desiccation, and shore angle,
along with biotic factors such as predation and competition
all have a dynamic role in structuring intertidal communities
[Raffaelli and Hawkins, [1999]].

Here, we demonstrate that coupling the results from the BN
can complement the strong predictive abilities of ANNS.
BN show strong potential in revealing ecological networks,
however due to the discretization of data, it is sub-optimal
as a predictive tool as we would be limited to a classification
type problem. On the other hand, ANN show very strong
predictive capabilities, where the predictive power was sig-
nificantly superior compared to GLM models. However, due
to its black box nature, the results are generally difficult if
not impossible to interpret. Given that explaining ecologi-
cal relationships is integral in the study of ecology, ANNs
may not be optimal as a standalone model. Thus, combining
the results from BNs and ANNs can in turn can overcome
each models’ respective shortcomings, where BNs can be
used to explain the underlying relationships between vari-
ables, which can inform the training of ANNs to ultimately
develop strong predictive models.

To conclude, this novel Bayesian-neural network approach
shows promise in the field of ecology as it can achieve two
important features: 1) it has potential to reveal ecological
network structures in different ecosystems, where existing
relationships between species and other functional compo-
nents are not known; and 2) it can guide the training of
powerful predictive models by serving as a robust variable
selection tool.
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