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1 EXTENDED ABSTRACT

Probabilistic networks can explore and describe the relation-
ships among genetic or epigenetic features, even allowing
the possibility to consider a particular condition of interest
as part of the network (e.g., a stressful condition) [Agrahari
et al., 2018, Jansen et al., 2003]. Bayesian networks repres-
ent a useful approach that has been applied to many biolo-
gical systems in order to model the dependencies among
a given set of features [Heckerman et al., 1995]. The aim
of our study was to apply a Bayesian network structure
learning approach in order to elucidate relationships and po-
tential interactions among epigenetic features and a stressful
condition driving epigenetic differences, in a poultry animal
model, the chicken (Gallus gallus).

The epigenetic data presented challenges for learning the
Bayesian network structure. Firstly, while the 46 animals in
the study represent a relatively large cohort in epigenetics,
it is a reasonably small quantity of data for Bayesian net-
works, resulting in a challenging search space. Secondly, the
epigenetic data had an imbalance in discrete states, which
can lead to possible artefacts in learning the structure [Milns
et al., 2010, Mitchell et al., 2021]. In order to overcome
these challenges, we applied an interdisciplinary approach
by using advances first developed for Bayesian networks
within an ecological context [Milns et al., 2010] to our
poultry epigenetics dataset.

A Bayesian network structure was learned from epigen-
etic data collected from our experiment involving 46 male
White Leghorn chickens (Gallus gallus). Twenty-two chick-
ens were raised under control conditions, while the other
twenty-four were exposed to a social isolation protocol for
21 consecutive days (stressful condition) [Pértille et al.,
2020]. Thereafter, the DNA was extracted from red blood
cells, a reduced representation of the methylome was se-
quenced, and bioinformatics pre-processing and analysis
was performed. A set of 60 regions were selected, each
one of them having differential methylation patterns of the
nucleotide cytosine (henceforth referred to as differentially

methylated regions or DMRs) between the experimental
groups. Each individual had a particular value for each
DMR, depending on the number of DNA segments con-
taining methyl groups added to cytosine, ranging from 0
to 39 [Pértille et al., 2020]. In addition to the DMRs, the
stressful condition was included in the dataset as a binary
variable (control = 0; stress = 1).

Analysis of the DMR distributions showed that non-
methylation (DMR = 0) was the most abundant state. Thus,
the values of each DMR were also discretized into two pos-
sible categories, 0 for absence of methylation, and 1 for
presence of methylation, the latter including all values > 0.
Despite this discretisation, there was still an overabundance
of samples without methylation, creating an imbalance of
0s and 1s. To avoid potential artefacts from this imbalance,
we applied the methodology from Milns et al. [2010]. A chi-
square test was applied for each pair of variables, filtering p-
values equal or higher than 0.25. These pairs were included
as prior information as arcs to be avoided in the structure,
as the test showed no possible dependence between them.

A total of 100 Bayesian networks were learnt from an initial
set of 100 random graph, using the R package bnlearn
with a tabu search and the BDe score [Scutari, 2011]. To
deal with the challenging search space, the phylogenetic
model averaging approach from Milns et al. [2010] was
used to select high probability arcs. This phylogenetic ap-
proach treats the presence of arcs in a network as features
with which to build a phylogenetic tree, then performs a
regression on network score controlled by the correlation
patterns of the phylogenetic tree in order to identify an aver-
age probability of each arc being in a high-scoring network.
These arc probabilities are clustered using a Gaussian mixed
model to identify highly probable arcs [Milns et al., 2010].
Considering that this was still a heuristic random process,
the final set of highly probable arcs identified was slightly
different after different runs of the algorithm. Therefore, in
order to build the consensus network, the arcs common to
50 searches were combined. The Markov Blanket property
of the stressful condition was identified as the set of parents,
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children and spouse nodes that makes the stressful condition
independent from the rest of the network.

The consensus network included 47 out of the 61 fea-
tures, identifying a total of 43 arcs. OCLN—DMR7,
CANX—TPST2, and FBN1—ENSGALG00000027231.4
had the highest values of probabilities (0.96, 0.86 and
0.83, respectively). The Markov Blanket of the stress-
ful condition consisted of two DMRs, OCLN and ENS-
GALG00000051236.1. The arc between the treatment and
OCLN had the highest average probability value (0.81).

Bayesian networks are a useful tool to identify and unravel
hidden patterns within the data. For example, identification
of methylation patterns of as-yet unnamed genes (ENS-
GALG00000051236.1 and ENSGALG00000027231.4) as
being relevant in the network can spur biological invest-
igation into the function of these genes. In particular for
genetic and epigenetic networks, the focus can be put on the
overall structure of the network and how the information
flows through it [Li et al., 2010]. The Markov Blanket of the
stressful condition could be used as epigenetic markers in
close association with stress resilience, working towards the
identification of biomarkers to be used for animal welfare
improvements.
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