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Abstract

The treatment of ovarian cancer still faces several
challenges: it is often diagnosed at a late stage,
and many patients relapse due to acquisition of re-
sistance to chemotherapeutic agents. We aimed to
identify gene sets which can predict prognosis in
patients. We used experimentally-obtained tempo-
ral gene expression from a mouse xenograft study
to identify groups, or clusters, of genes sharing sim-
ilar differential expression profiles. Dependency of
gene expression values on treatment was assessed
by using Bayesian network structure learning to
identify connections among clusters and with a
treatment variable. We hypothesised that gene clus-
ters directly dependent on treatment could be prog-
nostic of patient survival. Prognostic ability of all
such network-identified clusters were assessed in
an independent clinical dataset. Expression val-
ues of genes in some of these clusters allowed the
clinical dataset to be separated into groups with
significantly different progression-free (time to re-
lapse) survival and thus are prognostic. The prog-
nostic genes identified provide avenues of further
research into the development of a clinically vi-
able prognostic tool and into potential therapeutic
targets.

1 INTRODUCTION

Ovarian cancer is a major cause of cancer fatality in women,
In 2020, it was estimated that 13,940 women in the United
States of America died of ovarian cancer [Siegel et al., 2020].
Treatment options include a number of relatively effective
chemotherapeutic drugs in combination with surgery. How-
ever, lack of early-stage symptoms leads to late diagnosis,
thus poor long-term survival.

A major issue in the field is the development of resistance

to one of the main treatment regimens. Both Carboplatin,
and Carboplatin in combination with Paclitaxel are utilised
to treat ovarian cancer. Carboplatin is a platinum based
alkylating agent which functions by creating guanine cross-
links in the DNA, disrupting replication and preventing
cell growth. Resistance to this drug often develops with
increased DNA repair and drug inactivation [Apps et al.,
2015]. Paclitaxel is a non-platinum based agent that acts
by inhibiting microtubules during mitosis and meiosis and
thus causing cell cycle arrest and apoptosis [Jordan and
Wilson, 2004]. Even when used in combination, the drugs
are imperfect. Therefore, another current research focus
is elucidating mechanisms underlying drug resistance, as
well as resistance prediction and identification of novel drug
targets.

Gene expression analysis can identify novel biomarkers and
aid prognosis. In particular, network analysis has been used
to identify prognostic signatures of ovarian cancer, however,
only using static clinical gene expression [Coveney et al.,
2015, Yan et al., 2020]. Experimental temporal data provides
increased dimensionality and an ability to see subtle changes
in expression over time that may lead to novel insight.

Bayesian network analysis offers the ability to connect ex-
perimental condition with gene expression measurements
and further benefits from its ability to handle "noisy data",
common in biological data. Bayesian network analysis of
gene expression data has previously been implemented
in the study of breast and thyroid cancer amongst others
[Gevaert et al., 2006, Polanski et al., 2007].

In keeping with these aims, here we analyse a temporal
gene expression data series looking at cancer tumours’ re-
sponse to the two major medication regimens in clinical use,
with gene expression sampled at multiple time points after
drug treatment. The experiment includes both a platinum-
sensitive ovarian cancer cell line, OV1002, and a platinum-
resistant ovarian cancer cell line, HOX424. Genes differ-
entially expressed compared to untreated control in each
cell line were identified for each treatment regimen. Here
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Figure 1: Flowchart of our analysis approach. BN =
Bayesian network.

we aim to examine whether we are able to identify prog-
nostic genes by employing Bayesian networks to statisti-
cally model dependent relationships between drug treatment
and gene expression. To perform this analysis, we utilise
two visualisation techniques to cluster the differentially ex-
pressed genes and to guide the Bayesian network search. We
hypothesise that differentially expressed genes with direct
statistical interaction with the treatment condition will be
prognostic of survival in ovarian cancer: we thus test our
identified genes in an independent clinical cohort. We found
a number of gene sets connected to the treatment condition.
Of these four had prognostic capabilities in differentiating
patients’ survival.

2 METHODS

2.1 OVERVIEW

Figure 1 provides an overview of our analysis, described in
detail in the following sections. We cluster temporal gene
expression profiles using the visualisation tool MLCut [Vo-
gogias et al., 2016]. These clusters are used as data from
which to learn a Bayesian network structure using Banjo
[Smith et al., 2006, Yu et al., 2004], with initial searches first
analysed via the visualisation tool BayesPiles [Vogogias
et al., 2018] to guide final search and network selection.
From final networks, we identify those clusters directly con-
nected to the treatment node as of interest. Each of these
clusters were then analysed for their prognostic ability in an
independent clinical dataset.

2.2 EXPERIMENTAL TEMPORAL GENE
EXPRESSION

The experimental temporal gene expression from cancer
tumours was taken from Koussounadis et al. [2014]. Briefly,
this experiment developed mouse xenografts by implanting
tumours in mice using either the platinum-sensitive cell
line OV1002 or the platinum-resistant cell line HOX424.
After a period of tumour growth, the tumours were treated
with either Carboplatin, Carboplatin in combination with
Paclitaxel, or left untreated as a control. Drug-treated tumour
samples were taken at days 1, 2, 4, 7 and 14 after treatment,
and control tumour samples were taken before treatment
and at days 1, 7 and 14. Gene expression was measured via
Illumina bead chips and differential expression determined
for each drug treatment/day/cell line combination compared
to controls pooled for each cell line [Koussounadis et al.,
2014]. We accessed gene expression values via the Gene
Expression Omnibus (GEO), accession number GSE49577,
and differential gene expression as log fold-change from
control via Supplementary Data 1 of the publication.

2.3 CLUSTERING USING MLCUT

For each of the tested cell lines, groups of similar gene
profiles were identified using hierarchical clustering of the
fold-change differential expression. MLCut [Vogogias et al.,
2016] was used to visually guide the selection of clusters.
Initially, TSclust [Montero and Vilar, 2014] was used to
calculate the distance matrix for all pairs of genes, based
on the Euclidean distance between the fold-change across
multiple time-points. A dendrogram was constructed using
average-linkage clustering [R Core Team, 2020]. Similarity
levels were scaled to range between 0 and 1, and the out-
put was transformed into a JSON format using the rjson
package in R [Couture-Beil, 2018]. For each cell line, both
the JSON-formatted dendrogram and the original temporal
data (in CSV), were visualised in MLCut (Figure 2).

For each cell type and treatment regimen, the same cluster-
ing distinctiveness parameter of 0.5 was used throughout
and a similarity parameter of 0.5 was used as a beginning
point. From there, similarity parameter and cluster selection
decisions were made based on visual feedback provided by
MLCut, maximising homogeneity of clusters whilst retain-
ing a viable number of clusters to use in Bayesian network
analysis.

2.4 BAYESIAN NETWORK STRUCTURE
LEARNING

Bayesian networks were recovered using Banjo [Smith et al.,
2006, Yu et al., 2004], which uses a score-based search al-
gorithm. Search decisions were guided by BayesPiles [Vo-
gogias et al., 2018], an interactive tool that allows visuali-



Figure 2: MLCut clustering: example with OV1002 treated
with Carboplatin. Initial cut (a) was modified via visual
inspection, iteratively selecting clusters. MLCut shows a
radial dendrogram (top) and a line plot (bottom) plotting
differential gene expression as log fold-change from control.
Different clusters are shown in different colours; colours
in the dendrogram and line graph are congruent such that
a gene’s differential expression line is shown as the same
colour as its node in the dendrogram. (b) Intermediate cuts
showing Cluster 11 (top), Cluster 14 (middle) and, on the
final cut, Cluster 18 (bottom). In each intermediate cut, one
cluster is highlighted in the dendrogram (thicker outlines)
and only those genes’ differential expression coloured in the
line plot (shown via connecting line).

sation of scores and structures of search results. The origi-
nal (not differential) gene expression values were used for
Bayesian network analysis, including all cell line, treatment,
and control samples. Mean gene expression was calculated
across all genes in each cluster. Networks were built from
these mean values plus a binary variable indicating whether
the sample was treatment or control, with one network solu-
tion per cell line/treatment combination.

Basic settings shared between all searches were BDe score,
quantile discretisation into 3 states, maximum parent count
5, and equivalent sample size 1. Initial searches consisted of
two sets of 5 replicate searches visiting 25 million networks,
one set using a greedy search with all local moves (makes
change that increases the score most), and one using simu-
lated annealing with the default settings. If needed, we ran
an additional set of 5 replicate searches using greedy search
with random local moves (selects first change encountered
that increases the score). Final search configurations were
decided based on inspection via BayesPiles as reported in
Results. Results could be a single top network, or the con-
sensus network model averaging feature of Banjo. The con-
sensus network includes links with probability ≥ 0.5 based
on a set of top-scoring networks weighted by network score.

2.5 EVALUATION OF PROGNOSTIC ABILITY

Those clusters directly connected to the treatment node for
each cell line/treatment combination were evaluated for
ability to predict survival in an independent clinical sample
of ovarian cancer patients. In vivo gene expression and
survival data were taken from Tothill et al. [2008]. Briefly,
gene expression of tumours from 285 patients was evaluated
via Affymetrix gene chips. Survival was recorded as months
to relapse (progression-free survival) and death (overall
survival), and right-censored with status at final follow-
up (e.g., progression-free, relapsed, or deceased) [Tothill
et al., 2008]. We accessed gene expression via the Gene
Expression Omnibus (GEO), accession number GSE9891,
and patient survival data via Supplementary Table 1 of the
publication.

For each cluster directly connected to the treatment node,
hierarchical clustering was applied to scaled patient expres-
sion values (mean = 0, standard deviation = 1) using Eu-
clidean distance and complete linkage [R Core Team, 2020].
We aimed to split the hierarchy into two groups of patients
with most different gene expression by using the highest
level cut. However, for four clusters these cuts were ex-
tremely uneven (< 6 patients in one group), thus the small
groups were discarded and clusters cut consecutively lower
until at least 10% of the patients were in the smallest group,
using the second cut for three clusters (discarding 1, 2 and
6 patients) and the fourth for another (discarding 3 patients).
We compared survival of the two groups of patients de-
fined by each cluster with Kaplan-Meier survival curves
using the survival package in R [Therneau and Gramb-
sch, 2000]. Statistical probability of the two cluster-defined
groups having different progression-free and overall survival
was assessed for each cluster, using Bonferonni-corrected
significance criteria adjusted for the number of clusters.

3 RESULTS

3.1 CLUSTERING

3.1.1 OV1002 Carboplatin divides into 19 clusters

The similarity value of 0.5 yielded five clusters. The smallest
three clusters were selected following visual assessment of
the temporal expression. The smaller of the two remaining
clusters was further split with a similarity value of 0.606,
at which point the smaller of the two clusters was selected.
The remaining cluster was split with similarity parameters
0.622 and 0.661, again at which the smaller of the clusters
was selected. The remaining cluster was split at similarity =
0.702, at which point both clusters were selected as further
splitting did not yield more visually homogeneous clusters.
Returning to the largest cluster generated using similarity
= 0.5, a similar method was used where by the cluster was



repeatedly split, the smaller of the two clusters selected,
and the remaining further split. This was done at similarity
values of 0.508, 0.569, 0.591, 0.641, 0.653, 0.677, 0.697,
0.704, 0.74 and a final split at 0.771 where both clusters
were selected. In total this yielded 19 clusters.

3.1.2 OV1002 Carboplatin and Paclitaxel divides into
20 clusters

The starting similarity value of 0.5 identified eight clusters
of genes. The six smallest clusters were selected. The largest
remaining cluster was split with a similarity parameter of
0.52 and the smallest cluster selected. The remaining cluster
was further split and the smaller clusters selected at values of
0.552, 0.577, 0.603 and 0.638 at which the remaining cluster
was also selected. The second largest cluster identified using
similarity = 0.5 using the same methodology was split at
similarity values of 0.501, 0.526, 0.529, 0.535, 0.577, 0.593
and 0.66 at which the remaining cluster was also selected.
This yielded a total of 20 clusters.

3.1.3 HOX424 Carboplatin divides into 6 clusters

The initial similarity parameter of 0.5 clustered the expres-
sion data into six well defined clusters; all were selected.

3.1.4 HOX424 Carboplatin and Paclitaxel divides
into 11 clusters

The initial similarity value of 0.5 yielded 7 clusters. The
five smallest clusters were selected. The largest remaining
cluster was split with a similarity parameter of 0.537 and
both clusters selected. The smaller remaining cluster from
using a similarity parameter of 0.5 was further split at 0.517,
0.555 and 0.644 at which point both resulting clusters were
selected. In total this yielded 11 clusters.

3.2 BAYESPILES-GUIDED NETWORK SEARCH

3.2.1 Networks of OV1002 clusters identify 4 clusters
directly linked to treatment

For networks of clusters found from both OV1002 treated
with Carboplatin only and with Carboplatin plus Paclitaxel,
Bayespiles inspection guided the same search choices. In
both cases, initial greedy searches showed clear multiple
hills in the search space. Simulated annealing searches had
variation across the five runs, but all showed higher scoring
networks than the greedy searches. Further runs of greedy
search with only random local moves resulted in all different
networks with scores between those of the all local moves
greedy search and simulated annealing (Figure 3a). Thus, we
determined the search space was complex and most suited to

Figure 3: BayesPiles investigations. (a) Greedy searches
with all local moves (left, grey) for OV1002 treated with
Carboplatin had worse scores than greedy with random
local moves (middle, turquoise) and simulated annealing
(right, orange). Horizontal axis represents networks sorted
by score; shaded area represents summary of out-degree for
each node on the vertical axis (darker=higher). Line below
horizontal axis represents score (longer=higher). OV1002
Carboplatin and Paclitaxel showed similar results. (b) Two
representative of the identical greedy searches for HOX424
treated with Carboplatin (left) and matrix summaries of top
structures from all five searches (right). Plots of networks
and scores as in (a); matrix summaries show a skeleton view,
for consideration of equivalence classes, of all links in the
network, with filled boxes indicating a link between nodes
on both axes. Shaded bars above matrix show summary of
out-degree for each node across horizontal axis.

simulated annealing and model averaging. Additional sim-
ulated annealing searches were run to the increased value
of 250 million networks searched, and consensus networks
calculated from the top 100 networks after pruning for equiv-
alence classes (24-31 networks for OV1002 Carboplatin;
25-43 networks for OV1002 Carboplatin and Paclitaxel).
These searches were repeated 10 times. The treatment vari-
able linked in at least 9 of 10 consensus networks to three
clusters for OV1002 treated with Carboplatin (Clusters 11,
14 and 18; Figure 4a) and one cluster for OV1002 treated
with Carboplatin and Paclitaxel (Cluster 2; Figure 4b).

3.2.2 Networks of HOX424 clusters identify 2 clusters
directly linked to treatment

For networks of clusters found from both HOX424 treated
with Carbpoplatin only and with Carboplatin plus Paclitaxel,
Bayespiles inspection guided the same search choices. In
both cases, the intial greedy searches all found the same
identical top network (Figure 3b), also found in 2 (Carbo-
platin plus Paclitaxel) to all 5 (Carboplatin only) of the
simulated annealing searches (the other simulated annealing
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Figure 4: Networks of clusters and Treatment variable for (a) OV1002 treated with Carboplatin, (b) OV1002 treated with
Carboplatin and Paciltaxel, (c) HOX424 treated with Carboplatin and (d) HOX424 treated with Carboplatin and Paciltaxel.
Tr = Treatment node (red fill); C_# = Cluster #. Clusters linking to Treatment with grey fill. (a) and (b) show consensus
networks from 10 searches each in different colours; (c) and (d) show single identical top network from all searches.

searches found lower-scoring networks). This top network
was first discovered after less than 1 million networks in the
25 million networks examined. Thus, we determined this
single top network was the clear solution. The treatment
variable linked to one cluster each for HOX424 treated with
Carbpoplatin (Cluster 2; Figure 4c) and HOX424 treated
with Carboplatin and Paclitaxel (Cluster 9; Figure 4d).

3.3 PROGNOSTIC ABILITY OF CLUSTERS

3.3.1 Network-identified clusters are prognostic of
progression-free survival

Four clusters separated patients by progression-free survival,
two significantly against a Bonferonni-adjusted significance
criteria of α < 0.0083: Cluster 11 identified from OV1002
treated with Carboplatin (p = 0.00649; Figure 5a) and Clus-
ter 9 identified from HOX424 treated with Carboplatin and
Paclitaxel (p = 0.00816 Figure 5b; others: OV1002 Carbo-
platin Cluster 14 p = 0.03309, OV1002 Carboplatin and
Paclitaxel Cluster 2 p = 0.02557; Figure 5cd).

The remainder of comparisons did not separate patients by
progression-free (p > 0.42) or overall survival (p > 0.14).
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Figure 5: Survival analysis on clinical data. Kaplan-Meier
plots for progression-free survival on patients split by
network-identified clusters. Curves represent probability of
survival at given months for each of the two cluster-defined
groups, with shaded regions representing 95% confidence
intervals; p-value is statistical comparison between curves.



4 DISCUSSION

This study enquired whether Bayesian network analysis
could identify gene clusters in vitro that were able to prog-
nose a clinical dataset in vivo. We used two ovarian can-
cer cell lines with different platinum sensitivity to look
at gene expression following administration of two drug
regimens. Bayesian network analysis of clusters of differ-
entially expressed genes successfully identified gene sets
directly linked to drug treatment in an experimental study
of temporally dynamic gene expression. Of these, four were
prognostic – two significantly after correction for multiple
testing – of patient survival in an independent dataset.

To come to these results we used visualisation tools to assist
in both clustering of differential expression profiles and
making decisions for Bayesian network structure learning.

MLCut was used to select clusters of differentially expressed
genes in each cell line/treatment. An advantage of this soft-
ware is that it allows simultaneous visualisation of clustering
in the dendrogram space, and in the original data space. This
enabled intuitive selection of clusters, and use of different
similarity parameters, balancing cluster size with distinc-
tiveness of the cluster expression profiles.

BayesPiles guided the network search. Two datasets (clus-
ters from the OV1002 treatments) had more challenging
search spaces than the other two (clusters from the HOX424
treatments). Easy visualisation of test searches in BayesPiles
gave confidence to the decisions made. Without such a
tool, standard practice would lead to use of one somewhat
arbitrarily-determined criteria to guide the heuristic search,
e.g., a single top network or model averaging method. How-
ever, a single top network would have been inappropriate
for the OV1002 clusters as it was clear the search space
was variable enough that no single top network had high
confidence. Yet model averaging would have been inappro-
priate for the HOX424 networks as it would have diluted
the signal of the consistently-found top network, potenitally
losing interesting dependencies. Thus, use of BayesPiles en-
abled tailoring of heuristic search to each dataset, providing
increased confidence in the resulting networks.

The analysis identified six clusters connected to the treat-
ment variable across the different cell lines/treatment con-
ditions. These clusters contained a number of genes with
prior associations to cancer, in addition to other biological
phenotypes.

OV1002 Carboplatin Cluster 11 contained 17 genes in-
cluding some with prior associations to cancer including:
C1ORF24 which has shown to be involved in both renal
cancer and thyroid cancer [Adachi et al., 2004, Carvalheira
et al., 2015]; PCK2 which is known to be involved in tu-
mour cell survival in lung cancer [Leithner et al., 2015];
CDC25A, a known regulator of the cell cycle involved in
numerous cancers [Busino et al., 2004]; PHGDH which is

responsible for an increased risk of oncogenesis in breast
cancer [Locasale et al., 2011]; and LAMP3 which has been
identified as a potential prognostic biomarker for cervical
cancer, promoting metastasis [Kanao et al., 2005].

OV1002 Carboplatin cluster 14 contained nine genes. Sev-
eral of these including MYC, SGK1 and FABP5 are known
to be involved in cancer [Dang, 2012, Sang et al., 2021,
Carbonetti et al., 2019]. FABP5 in particular has prior asso-
ciations to ovarian cancer [Gharpure et al., 2018].

OV1002 Carboplatin cluster 18 contained 59 genes. Func-
tional annotation using DAVID [Huang et al., 2009a,b]
showed significant association with nucleoplasm and DNA
replication in addition to several DNA replication regulation
terms and DNA damage. This matches with the therapeutic
action of Carboplatin being to introduce cross-links in the
DNA, inducing DNA damage and inhibiting cell-growth
[Apps et al., 2015].

OV1002 Carboplatin and Paclitaxel Cluster 2 contained 19
genes, several of which have known involvement in cancer.
These include FAM129A which has been shown to be in-
volved in both prostate and lung cancer [Pällmann et al.,
2019, Zhang et al., 2019], AURKB which is involved in
the resistance of lung cancer treatment [Bertran-Alamillo
et al., 2019], and PCK2 which was also in the OV1002
Carboplatin Cluster 11 and is associated with tumour cell
survival [Leithner et al., 2015]. Functional analysis with
DAVID [Huang et al., 2009a,b] found significant associa-
tions with cell cycle regulation. This is supported by known
involvement of several of the genes in cycle control includ-
ing CDC25A and E2F2 [Busino et al., 2004, Laresgoiti et al.,
2013]. This is in line with Paclitaxel’s therapeutic action
being disruption of the cell cycle. Additionally several of
the genes have known involvement with cell fate such as
NUP210 [D’Angelo et al., 2012] and DNA damage response
such as FOXM1 [Khongkow et al., 2014]. This may reflect
the therapeutic action of carboplatin.

HOX424 Carboplatin Cluster 2 contained a single gene,
TRIB3. This gene has previous associations to cancer [Wang
et al., 2013, Lee et al., 2019] and cell survival [Hua et al.,
2015]. Interestingly, TRIB3 has been targeted by a new
potential therapeutic agent which could be clinically im-
plemented in combination with Carboplatin and Paclitaxel
[López-Plana et al., 2020]. This supports the use of Bayesian
network analysis to identify novel therapeutic targets.

HOX424 Carboplatin and Paclitaxel Cluster 9 contained
135 genes. Functional annotation using DAVID showed sig-
nificant associations with translational initiation. The cluster
also contained a number of genes with known involvement
in cancer including: MEN1, mutations in which cause mul-
tiple endocrine neoplasia type 1 which is characterised by
tumours in the endocrine glands [Marx et al., 1998]; CCND1
which has been implicated in endometrial cancer [Moreno-
Bueno et al., 2003] and is known to be involved in cell cycle



regulation [Wang et al., 2018]; PIK3R1 which has shown to
have prognostic capabilities in breast cancer [Cizkova et al.,
2013]; and EML4 which has previously been implicated in
lung cancer [Soda et al., 2007], amongst others.

It is interesting to note that several of the genes were dis-
covered across the different treatment types. Notably PCK2
and CDC25A were found in the clusters connected to treat-
ment in both the OV1002 treated with Carboplatin, and the
OV1002 cell line treated with Carboplatin and Paclitaxel.
Neither of the these genes were in the clusters connected
with the treatment condition in the HOX424 treatment-
resistant cell line. This may suggest that PCK2 and CDC25A
are involved in the pathways that lead to drug resistance,
and warranting further investigation into their metabolic
response to the drug regimens.

Further, it is notable that numerous clusters across the con-
ditions had no direct links to any nodes – either other gene
clusters or the treatment node – within the network analysis:
OV1002 Carboplatin Cluster 3, OV1002 Carboplatin and
Paclitaxel Cluster 7 and HOX424 Carboplatin and Pacli-
taxel Clusters 1, 2 and 3. These represent a set of genes that
currently do not appear to be affected by medication and
therefore could indicate previously unused therapy targets.

Of the six clusters identified using the Bayesian networks,
four were able to stratify patients by progression-free sur-
vival with marginal significance, two with significance fol-
lowing Bonferroni correction. These two were OV1002 Car-
boplatin Cluster 11 and HOX424 Carboplatin and Paclitaxel
Cluster 9. HOX424 Carboplatin and Paclitaxel Cluster 9 was
a large cluster, containing 135 genes. It contained a number
of known cancer genes, some which have previously been
shown to have prognostic capabilities in other cancer types.
Comparatively OV1002 Carboplatin Cluster 11 contained
only 17 genes, but also contained genes that have previous
associations to cancer patient prognosis.

In summary, the work here has demonstrated the utility of
Bayesian network analysis when applied to biological data
in identification of important ovarian cancer-related genes.
Here we used the technique to identify genes with prognostic
ability in an independent clinical dataset. This has identified
a number of genes, many of which may warrant further study
to assess their viability as therapeutic targets. This method
could be further applied to other datasets to discover further
biomarkers and potential drug targets in other cancers and
other diseases.
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