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Abstract

Data analysis using machine learning, in partic-
ular probabilistic graphical models, can provide
valuable information on the COVID-19 pandemic.
Recently, the Mexican National COVID-19 Data
Base has been made public, including more than
6.5 million cases of persons that have been regis-
tered with symptoms of COVID-19, in a single,
free, open-access information system. In this work,
we report an initial exploration of the Mexican
COVID-19 data base with two types of models: (i)
Bayesian network classifiers and (ii) causal graph-
ical models. We obtained several Bayesian clas-
sifiers for predicting COVID-19 based on all the
relevant attributes in the data base. Additionally,
the structures obtained provide interesting informa-
tion regarding the most relevant attributes for pre-
dicting COVID. We also applied causal discovery
algorithms to uncover causal relationships between
COVID and several factors, providing additional
insights of this phenomena.

1 INTRODUCTION

The COVID-19 pandemic has disrupted the social and eco-
nomic state of most countries worldwide. Mexico is par-
ticularly vulnerable to the virus due to its high popula-
tion with diabetes, hypertension, and obesity. It also has
insufficient infrastructure and it is difficult to implement iso-
lation policies, as half of the population lives in the infor-
mal economy and depends on a daily income.

Data analysis using machine learning can provide valuable
information on the pandemic, including alternative strategies
for fast diagnosis, determining the most critical sectors of
the population or areas in a country, analysing the effective-
ness of certain containment measures, etc. However, access
to large and comprehensive data has been difficult. In the

case of Mexico, recently the data base from the Health Min-
istry has been made public, including more than 6.5 million
cases of persons that have been registered with symptoms
of COVID-19.

The Mexican National COVID-19 Data Base incorporates
organized and standardized epidemiological and demo-
graphic information on the evolution of the COVID-19 pan-
demic in Mexico; in a single, free, open-access information
system. This open-access data set includes references to the
patients’ sex and age, their place of residence, their symp-
toms and comorbidities, whether they were tested and the
test’s result, whether they were hospitalized or died, and
relevant dates, among other data.

Probabilistic graphical models have certain advantages over
other machine learning techniques. Besides providing, in
general, good accuracy for classification or prediction, they
can give additional information about the phenomena. In
this work we report an initial exploration of the Mexican
COVID-19 data base with two types of models: (i) Bayesian
network classifiers and (ii) graphical causal models. We
developed both types of models as they have different ob-
jectives: Bayesian classifiers can predict certain variables
of interest, such as if someone has COVID; causal models
provide information on the causal relations between differ-
ent variables which can help to understand the problem and
predict the effect of certain interventions.

We considered three different variants of Bayesian net-
work classifiers (BNCs) [Sucar, 2021]: (a) Naive Bayes
classifier, (b) Semi-Naive Bayes classifier (SNBC), and (c)
Bayesian network-augmented (BAN) classifier. Using the
three variants we learn classifiers for predicting COVID-
19 and MORTALITY based on all the relevant attributes
in the data base. Additionally, the structures obtained with
the SNBC and BAN, provide some interesting informa-
tion regarding the most relevant attributes for predicting
COVID/MORTALITY, and the dependency relations be-
tween the variables.

Graphical causal models [Pearl, 2009] go beyond Bayesian
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networks by representing causal relations between variables,
so they can be used to predict the results of interventions and
provide explanations. We used a causal discovery algorithm,
Greedy and Fast Causal Inference (GFCI) [Ogarrio et al.,
2016] (described in Section 4), to uncover causal relation-
ships between COVID, MORTALITY and several factors
providing additional insights of this phenomena.

In terms of classification, the best results were obtained with
the SNBC, obtaining 65% accuracy for predicting COVID-
19, and 95% for predicting mortality. The final structures
obtained with the SNBC show the most relevant attributes
used for the predictions; and surprisingly it uses only three
variables to predict mortality with excellent results.

The causal structure obtained with the causal discovery al-
gorithm provides some interesting relations. In particular, it
confirms the strong relation between Fever and COVID;
as well as some not obvious relations, such as COVID
– Anosmia. Besides the strong expected relation between
MORTALITY and COVID, it also shows a direct relation
between Hospital Service and COVID. In what follows, and
in particular in the discussion section, a more comprehensive
analysis of the results is presented.

The rest of the paper is organized as follows. Section 2
presents an overview of the Mexican COVID-19 data base.
The results obtained with Bayesian classifiers are described
in Section 3, and those with causal graphical models in
Section 4. An analysis of the the main insights derived from
the experiments are discussed in Section 5, and we finalize
with some conclusions and directions for future work.

2 MEXICAN COVID-19 DATABASE

The Mexican COVID-19 Database (DB) was produced from
a combined effort of the Mexican Ministry of Health and
the National Autonomous University of Mexico to make
available the data collected nationwide about the COVID-19
pandemic. The data is collected by the Respiratory Viral
Epidemiological Surveillance System (Sistema de Vigilan-
cia Epidemiológica de Enfermedades Respiratorias Virales,
SISVER) consisting on 5,186 health units of the three lev-
els of the health care system. The DB contains over 97
useful variables, including the general references of the
patient, such as sex, age, place of residence; symptoms
and comorbidities; and also data on testing, hospitaliza-
tion, and deaths. The system includes around 6.5 million
individual records to the present date. The data has been
subject to a careful curation process, is weekly updated, and
can be accessed through a set of queries of general inter-
est, and also downloaded in full for research purposes at
http://covid-19.iimas.unam.mx.

Mexico has a great diversity of socio-economical and geo-
graphic conditions, and the original data is input and col-
lected at the local, state and nation level with great difficulty.

Table 1: Variables selected, grouped by categories, for learn-
ing the classifiers and causal models.

Category Variables

patient-data
GENDER, AGE, CITY, NATIONALITY, PATIENT TYPE,
INDIGENOUS, JOB, HOSPITAL SERVICE, CONTACT
BIRDS, CONTACT PIGS, CONTACT COVID

symptoms

FEVER, COUGH, ODINOGY, DYSPNOEA, IRRITABILITY,
DIARRHEA, CHEST PAIN, CHILL, HEADACHE, MYALGIA,
ARTHRALGIA, DISCOMFORT, RHINORRHEA, POLYPNEA,
VOMITING, ABDOMINAL PAIN, CONJUNCTIVITIS,
CYANOSIS, SUDDEN SYMPTOMS, ANOSMIA, DYSGEUSIA

comorbidities
DIABETES, COPD, ASTHMA, IMMUNOSUPPRESSION,
HYPERTENSION, HIV-AIDS, OTHER COMORBIDITIES, ENDO-
CARDITIS, OBESITY, CHRONIC KIDNEY, SMOKING

diagnosis and
treatment ANALGESIC, ANTIVIRAL, ANTIPYRETICS, VACCINATED

objective class COVID19, MORTALITY

The curation process has to face strong challenges, such as
bias, due to the fact that only people that presented symp-
toms and attend a health unit are included, and there is no
data about asymptomatic people; uncertainty about the re-
liability of the information due to the contingencies at the
original collection points; missing values in the data; data
integrity and unaccounted deaths; in particular, there is no
record of people that never sought medical assistance in
the health care system and died; neither of people that was
discharged and died afterwards. Nevertheless, the data is
reliable in a great degree and open for scientific research.

2.1 DATA SET PRE-PROCESSING

The data set contains 97 variables, some of them can be
considered as attributes while others as classes for classifica-
tion purposes. First, we identify COVID19 and MORTALITY
as the class variables. Then, a naive feature selection was
carried out; that is, unique identifiers, redundant variables,
variables that contain dates and variables with a high pro-
portion of missing values are removed, this results in 47
variables that will be used as attributes. The variables used
for learning the classifiers and causal models, clustered by
categories, are summarized in Table 1.

The following steps were applied to the dataset: Instances
with missing values are removed. The attribute AGE was
discretized {1: age lower than 60, 2: age greater or
equal than 60}. Only the instances that take the values
{YES, NO} from the following {MYALGIA, COUGH,
HEADACHE, RHINORRHEA, ODINOGY, DIARRHEA,
DYSPNOEA, CHEST PAIN, ANOSMIA, FEVER, IRRI-
TABILITY, CHILL, ARTHRALGIA, DISCOMFORT, POLYP-
NEA, VOMITING, ABDOMINAL PAIN, CONJUNCTIVI-
TIS, CYANOSIS, SUDDEN SYMPTOMS, DYSGEUSIA,
DIABETES, COPD, ASTHMA, IMMUNOSUPPRESSION,
HYPERTENSION, HIV-AIDS, COMPLICATION, ENDO-
CARDITIS, OBESITY, CHRONIC KIDNEY, SMOKING} are
considered (other values could be unknown, etc.).
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Table 2: Description of the datasets for the classification
problems. For COVID19: (P) Positive, (N) Negative. For
MORTALITY: (A) Alive, (D) Death.

Dataset for: #Instances #Atts. # P/A # N/D

COVID19 2,963,824 47 1,303,818 1,660,006
MORTALITY 5,482,335 47 5,287,744 194,591

Finally, for the classification problem of COVID-19
(COVID19 class) only instances associated to {POSITIVES-
COVID-19, NEGATIVE-COVID-19} are considered, while
for the classification problem of mortality (MORTALITY
class) only the instances with a valid value for the class are
considered. A summary of the data set after pre-processing
for both classification problems is shown in Table 2. The
data set of MORTALITY is highly unbalanced, ∼96.45%
are associated to alive and ∼3.55% to death.

3 BAYESIAN NETWORK CLASSIFIERS

This section presents briefly the Bayesian classifiers that
are trained to predict if a person is infected with COVID-19
and to predict MORTALITY. The implementations of the
classifiers are from the toolkit PGM_PyLib1 [Serrano-Pérez
and Sucar, 2020]. For a detailed description of the methods
see Sucar [2021].

3.1 NAIVE BAYES CLASSIFIER (NBC)

The Naive Bayes Classifier (NBC) is based in the assump-
tion that all the attributes are independent given the class
variable. So, each attribute Ai is conditionally independent
of all other attributes given the class (C):

P(Ai|A j,C) = P(Ai|C),∀ j , i (1)

In this way, the probability of each class given the attributes
can be written as:

P(C|A) = P(C)P(A1|C)P(A2|C)...P(An|C)/P(A) (2)

Where A is the short representation of A1,A2, ...,An with n
attributes, and P(A) can be considered as a normalization
constant.

Therefore, the classification problem, based on equation 2,
can be formulated as:

ArgC Max[P(C|A) = P(C) P(A1|C) P(A2|C)...
P(An|C)/P(A)]

(3)

That is, the class C that maximizes 3 will be returned as the
prediction for a new instance.

1Available at https://github.com/jona2510/PGM_
PyLib

3.2 BAYESIAN NETWORK AUGMENTED
BAYESIAN CLASSIFIER (BAN)

While the NBC assumes that all attributes are independent
given the class, there are models that incorporate dependen-
cies between the attributes. Bayesian network augmented
Bayesian classifiers (BANs) include a dependency structure
among attributes that can be any directed acyclic graph.

The posterior probability for the class given the attributes,
considering the conditional probability of each attribute
given the class and its parent attributes, is:

P(C|A) = P(C) P(A1|Pa(A1),C) P(A2|Pa(A2),C)...
P(An|Pa(An),C)/P(A)

(4)

Where A is the short representation of A1,A2, ...,An with
n attributes, P(A) can be considered as a normalization
constant and Pa(Ai) is the set of parent attributes of Ai.

In this way, the classification problem based on equation 4
can be formulated as:

ArgC Max[P(C|A) = P(C) P(A1|Pa(A1),C)
P(A2|Pa(A2),C)...P(An|Pa(An),C)/P(A)]

(5)

That is, the class C that maximizes 5 will be returned as the
prediction for a new instance.

3.2.1 Semi-Naive Bayesian Classifiers (SNBC)

The main idea of the Semi-Naive Bayesian Classifier is to
eliminate attributes with low mutual information with the
class, and eliminate or join attributes which are not indepen-
dent given the class in order to improve the performance
of the Naive Bayes classifier, accuracy is the evaluation
measure to be improved (see section 3.3.1 for more details).
Once the previous structure modifications are performed, a
NBC is trained for predicting the class of new instances.

3.3 EXPERIMENTAL CONFIGURATION

The training procedure for the classifiers is described below:

• BAN: The Chow-Liu algorithm [Chow and Liu, 1968]
was used to get the dependency structure between attributes
given the class variable.
• SNBC: validation was set to 0.8, that is, 80% of the train-
ing set is used to train a local classifier and the other 20% is
used to evaluate the performance of the classifier. Epsilon
and omega were set to 0.005 and 0.02 respectively, that is,
attributes with mutual information lower than epsilon are
removed; and two attributes are combined or one attribute
is removed if their conditional mutual information given the
class is greater than omega.

Furthermore, smooth was set to 0.1 in order to avoid zero
probabilities and the prior probabilities are used in the pre-
diction phase for the three classifiers. Finally, 5-folds cross
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validation was performed, so the results are the averages of
the 5 folds.

3.3.1 Evaluation Measures

Different evaluation measures are used to evaluate the per-
formance of the classifiers. Let T P, T N, FP and FN be true
positives, true negatives, false positives and false negatives,
respectively. The evaluation measures are described below:

• Accuracy: also know as exact-match. Return the percent-
age of instances correcly predicted.
• Precision = T P

T P+FP
• Recall = T P

T P+FN

• F1-score = 2∗ precision∗recall
precision+recall

The macro average of precision, recall and F1-score are
reported in the section of results, that is, the average of the
individual evaluation of each value in the class.

3.4 RESULTS

This section presents the results for both classification prob-
lems. Table 3 summarizes the results for COVID-19 and
Table 4 for MORTALITY. Furthermore, because the MOR-
TALITY dataset is highly unbalanced, the SNBC internal
evaluation measure was replaced by the F1-score in order
to avoid a classifier that always predicts the majority class.

Figure 1 shows the dependency structure for the SNBC for
predicting COVID, including the attributes selected in the
optimization process. At the end, eight attributes remained,
although one is the combination of two variables: Patient
type and Hospital Service2. Figure 3 depicts the dependency
structure obtained between the attributes for the BAN clas-
sifier. In this case, the class variable, COVID, is connected
to all the attributes (not shown in the graph for clarity).

The resulting structure obtained with the SNBC for predict-
ing MORTALITY is shown in Figure 2. Only three variables
remain to predict MORTALITY. Figure 4 shows the struc-
ture obtained by the BAN for predicting MORTALITY; here
also the class is connected to all the attributes.

4 GRAPHICAL CAUSAL MODELS

This section presents the graphical causal models for the
Mexican COVID19 data. First, we introduce the graphical
causal models and the algorithms for their learning. Next,
we describe the graphical causal models discovered.

2These two attributes are combined into a single variable given
they are not conditionally independent given the class, as a result of
the SNBC learning algorithm, see Sucar [2021], Chapter 4. Patient
type indicates if the patient was hospitalized or not, and Hospital
Service in which type of hospital.

Table 3: Results for classification problem of COVID-19,
standard deviation in parentheses. In bold the best scores
for each measure.

NBC BAN SNBC

Accuracy 0.6396 (0.01) 0.6396 (0.01) 0.6467 (0.015)
Precision 0.6338 (0.01) 0.6338 (0.01) 0.6438 (0.014)
Recall 0.632 (0.009) 0.6321 (0.009) 0.6293 (0.02)
F1-score 0.6323 (0.01) 0.6323 (0.01) 0.6267 (0.025)

Table 4: Results for classification problem of MORTALITY,
standard deviation in parentheses. In bold the best scores
for each measure.

NBC BAN SNBC

Accuracy 0.9435 (0.017) 0.9435 (0.017) 0.9549 (0.011)
Precision 0.6923 (0.034) 0.6922 (0.034) 0.7145 (0.034)
Recall 0.9176 (0.008) 0.9174 (0.008) 0.8546 (0.032)
F1-score 0.7536 (0.038) 0.7535 (0.038) 0.761 (0.028)

Figure 1: Dependency structure generated by the SNBC
classifier for predicting COVID19. In green the class node,
COVID19.

Figure 2: Dependency structure generated in the SNBC
classifier for predicting MORTALITY. In green the class
node, MORTALITY.

4.1 OVERVIEW OF CAUSAL DISCOVERY
TECHNIQUES

A graphical model has a causal interpretation when its struc-
ture contains a directed edge X → Y if there is an inter-
vention that fixes X to a specific value and changes the
probability distribution of Y [Spirtes et al., 2000].

For inferring structures of graphical causal models, causal
discovery methods analyze observational data and rely upon
some of the following assumptions: i) there is no common



Figure 3: Dependency structure generated by the BAN classifier for COVID19. The node COVID19 is not shown in the
graph for clarity, but all nodes are descendants of it.

Figure 4: Dependency structure generated by the BAN classifier for MORTALITY. The node MORTALITY is not shown in
the graph for clarity, but all nodes are descendants of it.



unobserved direct cause of two observed variables (Causal
Sufficiency), ii) every conditional independence entailed
in the causal structure is also in its associated probability
distribution (Causal Markov Assumption) and, iii) every
conditional independence entailed in the probability distri-
bution of the graphical model is also in its structure (Causal
Faithfulness Assumption).

Fast Causal Inference (FCI) [Spirtes et al., 1999] is a
constrained-based causal discovery method that performs
conditional independence tests for recovering causal struc-
tures. FCI does not assume causal sufficiency. It searches
for causal structures with unobserved variables under the
causal Markov and faithfulness assumptions. Starting with
a fully connected undirected graph and increasing the size
of conditional variables in each iteration, FCI applies condi-
tional independence tests for deciding which edges to delete.
It stops when there are no subsets of variables in which to
perform independence tests. Then it identifies if the statisti-
cal relation between two variables is due to an unobserved
variable. FCI outputs a partial ancestral graph (PAG) that
includes the following types of edges: 1) X→ Y when X is
a cause of Y , and Y is not a cause of X. 2) X↔ Y when X
is not a cause of Y , and Y is not a cause of X. There is an
unobserved variable causing X and Y . 3) X →◦ Y when X
is a cause of Y ( Y is not a cause of X), or there is an unob-
served variable causing X and Y . 4) X � Y when (exactly
one of the following holds): i) X is a cause of Y , ii) Y is a
cause of X, iii) there is an unobserved variable causing X
and Y , or iv) both (i) and (iii), or v) both (ii) and (iii).

Fast Greedy Equivalence Search (FGES) [Ramsey, 2015] is
a modification of the scored-based method Greedy Equiva-
lence Search (GES) [Chickering, 2002]. In the same form
as GES, under causal sufficiency, causal Markov, and faith-
fulness conditions, FGES optimizes some operations for
discovering causal structures of high dimensionality. FGES
uses a score function for evaluating potential causal struc-
tures and returns that structure with the highest score. First,
starting with an empty graph, FGES adds edges until the
score function reaches a local maximum. After that, it
deletes those edges that also could improve the score func-
tion. Finally, FGES returns a partial directed acyclic graph,
called Markov equivalence class (MEC), representing a set
of equivalent graphical causal models with the same proba-
bility distribution. These MECs include a directed edge if it
appears in all equivalent causal structures, and an undirected
edge if it appears in some of them.

The Greedy and Fast Causal Inference (GFCI) [Ogarrio
et al., 2016] combines FGES and FCI. First, GFCI applies
FGES to find a Markov equivalence class (MEC) that is
undirected in the next step. Then, it uses FCI to remove
false edges and correct the orientation of those edges in the
output of FGES.

4.2 RESULTS

With the help of the Causal-Cmd tool version 1.2.2 [Spirtes
et al., 1990] of the Center for Causal Discovery, we discov-
ered the causal relations between the variables in the Mexi-
can COVID19 database. For our experiments, we considered
the variables in Table 1 and the instances for COVID19
and MORTALITY described in Section 2.1. We applied
the GFCI method using the Bayesian Dirichlet equivalent
and uniform score (BDeu Score) and the Chi-square test,
with an alpha = 0.01, prior equivalent sample size = 10, and
maximum degree = 4.

In Figures 5 and 6, we present the causal relations discov-
ered by GFCI3. Figure 5 depicts mainly the causal rela-
tions among symptoms, COVID19, and MORTALITY. We
found that COVID19 is a direct cause of MORTALITY and
that FEVER is the only direct cause of COVID19. Some
of the other symptoms form causal paths with COVID19,
for example, CHES T PAIN → CHILL→ ODINOGY →
HEADACHE→COUGH→ FEVER. We also found that
COVID19 has effects over the use of antipyretic, analgesic,
and antiviral treatments.

In Figure 6, we present the causal relations among COVID19
and MORTALITY with comorbidity and patient- data vari-
ables. It can be observed in this figure that any comor-
bidity variable has direct causal relations with COVID19.
Some of the comorbidity variables, having symptoms as
intermediaries, form causal paths with COVID19. For
example, COVID19 → ANOS MIA → DYS GEUS IA →
OBES ITY → DIABET ES . We also found that AGE, GEN-
DER, VACCINATED, have uncertain relations with other
variables, and JOB and HOSPITAL SERVICE are direct and
indirect causes of MORTALITY.

The causal discovery algorithms have limitations, such as
not always determining the directions of the causal links,
and can be affected by unobserved co-factors; so the results
should be take with caution.

5 DISCUSSION

The causal relationships observed in Figure 5
show results consistent with the clinical pictures
observed in patients with COVID19 disease (see
https://www.cdc.gov/coronavirus/2019-ncov/
symptoms-testing/symptoms.html). Where a signifi-
cant percentage presents fever, dry cough, and tiredness,
where the latter is not reported as such in the database, but
which could be interpreted as an attack on the general state
(DISCOMFORT), which does not seem to have a direct
causal relationship in the built network. The CHILLS derive
in two routes associated with the symptoms. The first is

3Although a single causal structure is obtained, this is depicted
in two parts for clarity.
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Figure 5: The causal relations between symptoms, treatments, COVID19, and MORTALITY variables of the Mexican
COVID19 database discovered by the GFCI algorithm. The edges in the causal graph have the following meaning: X→ Y
when X is a cause of Y , and Y is not a cause of X; X � Y when (exactly one of the following holds): (i) X is a cause of Y ,
(ii) Y is a cause of X, (iii) there is an unobserved variable causing X and Y , both (i) and (iii), or both (ii) and (iii).

Figure 6: The causal relations between comorbidity, patient-data, COVID19, and MORTALITY variables of the Mexican
COVID19 database discovered by the GFCI algorithm. The edges in the causal graph have the following meaning: X→ Y
when X is a cause of Y , and Y is not a cause of X; X →◦ Y when X is a cause of Y ( Y is not a cause of X), or there is an
unobserved variable causing X and Y; X � Y when (exactly one of the following holds): (i) X is a cause of Y , (ii) Y is a
cause of X, (iii) there is an unobserved variable causing X and Y , both (i) and (iii), or both (ii) and (iii).



causally related to MYALGIA, ARTHRALGIA, and FEVER
reported as usual symptoms in COVID patients. MYALGIA
receives two interesting relationships: ODYNOPHAGIA and
CHILLS, where the pathways lead to a FEVER that could be
identified as general symptomatology commonly associated
with the disease. It is important to highlight that given the
novelty of the disease, the symptoms have been increasingly
associated. This implies that a series of symptoms such
as DYSGEUSIA, ANOSMIA, and CONJUNCTIVITIS,
among others, were added to the database as health service
providers have identified them as probable symptoms.
Therefore, it is expected that some causal relationships
could be impacted by a lesser amount of information
collected over time.

The comorbidities such as diabetes, hypertension, and obe-
sity have been correlated with increased severity of the dis-
ease and less satisfactory outcome, including higher mortal-
ity; being more so when these comorbidities are combined.
Although they are importantly related to each other in the
causal network, we can observe that they do not seem to
impact mortality or suffer from COVID19 directly. Further-
more, the results indicate that there is a close relationship
between HYPERTENSION and DIABETES. It is noteworthy
that in most cases, both the symptoms and the comorbidi-
ties are declared by the patients, so the results, although
significant, should be taken with caution.

Regarding the prediction of COVID19, a possible improve-
ment of our results could occur if health units receiving
COVID19 patients had access to clinical records, as cur-
rently in most of the cases the information is just what the
patient reports, so it is not reliable. This could significantly
improve predictions, and thereby find the known relation-
ship between COVID19 and comorbidities described above.

Finally, what seems to be a constant pattern in Figures 5 and
6, is that admission to a hospital has a significant relation-
ship with the mortality of the Mexican population, which
opens up interesting questions to investigate. For example,
if these increases in mortality took place at the peaks of
the epidemic in Mexico, which led to the saturation of care
services, especially all intensive care units, which would be
a response to what was observed in this study.

6 CONCLUSIONS

The Mexican COVID-19 Data Base, which contains more
than 6.5 million records, offers a unique opportunity for
modelers interested in understanding epidemiological as-
pects of the pandemic caused by the SARS-COV2 pathogens
that cause the COVID19 disease. The analyses carried out
in this work show that the symptoms present direct causal
relationships towards aspects such as mortality and the prob-
ability of suffering from COVID19. The data collected re-
sults from people who attended medical units, so there is

an under-registration, which could mask the relationships
between some variables, such as comorbidities. Despite
this, the results presented in this work show the first effort
to understand which epidemiological variables impact the
evolution of the pandemic in the Mexican population.

As future work, we plan to apply other causal discovery
algorithms, and to update the models as more data becomes
available.
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